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Abstract 
Previous work on multi-objective routing takes a system op- 

timization approach to minimize some global objective function. 
In this paper, we take a different approach using a game theoretic 
formulation. We focus on a simple example of two classes which 
" i z e  a delay objective. We present three cases. The first 
case (baseline) does global optimization where the routing poli- 
cies for the two classes are forced to be equal. The second case is 
where the two classes cooperate to minimize the same objective 
function of global average delay. In general, this team optimiza- 
tion approach will have a multiplicity of solutions which allow 
us to use secondary objectives to select the operating point. The 
third case is where each class optimizes its own objective fmc- 
tion (which may or may not be identical)- this corresponds to 
the classical non-cooperative Nash game. This allows different 
objectives to be adopted by the different classes. 

1. INTRODUCTION 

The usual approach to distributed system design and con- 
trol is the optimization of a single function, which may be the 
combination of multiple objectives as seen by the system ad- 
ministrator [2, 121. Thus, it is assumed that all customers in the 
system cooperate for the socially optimum, such as optimizing 
the average customer performance. 

However, in a real distributed-environment there is a diver- 
sity of customer classes, each one with possibly different ob- 
jectives. These different classes of customers compete for the 
limited common resources of the distributed system in order to 
optimize their own objectives, ignoring the inconvenience that 
they cause to the other customer classes. For example, different 
telecommunication. companies may share the same communica- 
tion links and one of them may want to maximize the through- 
put of its customers, another may want to minimize its average 
customer delay and a third may want to minimize the blocking 
probability of its customers. Another example is when differ- 
ent users share a multiprocessor system and one group of users 
wants to " i z e  its throughput, similarly another group of 
users wants to maximize its own throughput, another group of 
users wants to " i z e  its average response time and finally 
another group of users wants to minimize the variance of its 
response time. 

Customers of a given class arrive to the distributed system 
requiriig transfer to a destination node. The problem of de- 

ciding through which path each customer will be routed is the 
routing problem. Kobayashi & Gerla [13] consider the single 
objective multiple class routing problem in closed queueing net- 
works. Each closed chain corresponds to a different class of 
customers. They minimize the average delay, which is not con- 
vex, for closed chains routing, and therefore local minima exist. 
de Souza e Silva & Gerla 141 similarly consider the single objec- 
tive load balancing problem in a product form queueing network 
with fixed closed chain routing. They minimize a measure of the 
average delay with respect to the open chains flows. 

In this paper for simplicity of presentation, we consider two 
classes of customers which select between two l i n k s  joining the 
entry point and the destination (an expanded version is [8] and 
the more general case is (91). We formulate and solve the routing 
problem both as a team optimization problem and as a Nash 
non-cooperative game [I] among the two competing classes of 
customers, wliere each class of customers tries to operate in the 
most beneficial way for its own customers. The formulation 
of the routing problem as a Nash game has also been (inde- 
pendently) proposed by Bovopoulos [3]. Another optimization 
problem in distributed systems that has been recently formu- 
lated as a Nash game is the flow control problem [3, 5, 111. We 
have also taken a different approach for distributed systems with 
priority classes. We have formulated and solved the two-priority 
classes load shariig problem as a Stackelberg game [7]. 

Other problems in distributed systems, where some resources 
are shared among competing classes of customers, may also be 
formulated as Nash or Stackelberg games. We have formulated 
and solved the join load sharing, routing and congestion control 
problem in arbitrary distributed systems with multiple compet- 
ing classes as a Nash game [9], and a Stackelberg game [IO]. 

2. NOTATION 

Let class le customers arrive to the system with rate X k  (Pois- 
son arrivals). So, the total arrival rate is X = Xk. Customers 

of any class may be served at  any server, where server i has rate 
C;. So, the total system capacity is C = C,. Without loss 

of generality, let the service requirement of each customer be 
exponentially distributed with mean 1. The fraction of class k 
customers assigned to server i is 4:. Let also the superscript * at 
a variable denote the optimum value of that variable. Further- 
more, for stability reasons it is assumed that the total h v d  
rate is less than the total service rate : X 5 C. 
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In this paper. for simplicity, we consider two classes and two 
servers. i.e. b E {.,a}. i E {1,2}. In the following sections, we 
consider three different formulations and solutions for sharing 
the two servers among customers of the two classes. 

3. TRAFFIC AGGREGATION 

In this section, we find the optimal routing policy, when the 
two classes are aggregated into a single class. Therefore, the 
fraction of class a customers assigned to a server is equal to 
the fraction of class P customers assigned to that server, i.e. 
@? = &! = 01 and 4; = df = ai2. If both classes want to 
minimize the average customer delay in the system [12], then 
we have the following optimization problem : 

w i t h  respect t o  01. @2 

such that q1 TP2 = 1, 91 ? 0, 42 2 0 

The average delay objective function J(o~,&) is convex with 
respect to ( @ I . & )  over the convex space 61 + 42 = 1 ,  2 
0, 9 2  ~ O . ~ O ~ C I - ( X " + X ~ ) * O I  >OandCz-()."+A')*d2>0. 
This is a simple problem and can easily be solved (2, 61 : 

If C'1 - d m  5 A" - AB and CZ - 

then pi = - - A J  - KI, 
0 5 Am + A b  5 C1 - m, then 0; = 1, 
o 5 Ao t AB 5 c2 - m, then 6; = 0, 

5 A- + AB 5 C1 + C2 
c1 4; = 1-4; 

If 
~f 

0; = 0 
4; = 1 

c1 + c2 - A- - AB cl 

x - + P  *- a+&r where l i l  = 

4. TEAM OPTIMIZATION 

In this section. we find the optimum routing decisions, when 
each class is treated independently from the other. The frac- 
tion of class a customers assigned to a server may be different 
than the fraction of class 5 customers assigned to  that server. 
However, both classes minimize the same objective - the average 
customer delav. This problem can be considered as a coopera- 

Then, the following policy [8] will optimally assign the arriv- 
ing customers to the two servers: 

If A" + AB 5 c, + CZ, 

accepi the soluti;; only i f  

c1- Pqq' - &(C2 - Afi&') 5 A" 

c, - A-@;.- - @, - A-d;') I AP 

Of course, the optimum routing fractions to the other server 
tive team g&e [l] between the two classes, where each-class 
solves the following problem : 

are @* = 1 - dy* and &* = 1 - if*. 
In the first case, we choose #* which leads to a value for 

@. The choise of value for @* is arbitrary so we may use some mintmtze 
other criterion to decide which values to use. 

In Fig. 1, we show the optimum routing fractions (@*, &) 
for tixed server capacities, CI = 2, CI = 1, fixed class p arrival 

A- * 6; + AB * @f * 
J ( d J ? ,  dJ;? 6 : ~  4;) = 5 

,=I 
Am AB c, - Au i; - ~5 I 4 

such that @? + 4; = 1, 4: + 4; = 1, 

4?! o;> @!, 4: 2 0  

The objective function J ( 4 y  $;,&,&) is convex with re- 
spect to(dy,d;,&,&)overtheconvexspace@t@ = 1, &+ 
4; = 1, 47, r$;, &, 4 2 0, for C1 - X u * #  - A 9 * &  > 0 and 
cz - A 0  * 4; - A@ * 4: > 0. 

D e h e  the auxiliary variables 

~. 
rate, A@ = 1, and different class a arrival rates, Aa = 0.1, ..., 1.9. 
We notice something remarkable. The straight line solutions for 
different class a arrival rates intersect at  a single intersection 
point. This means that there is a common pair of optimum 
routing fractions (dy*,&*), where we can optimally operate for 
different class a arrival rates. So, we can use the optimum rout- 
ing fractions of the intersection point and operate optimally even 
if the class a arrival rate varies. Proposition describes this re- 
sult more formally. 

: Let two classes of cwtomers a and p coop- 
erate an sharing two servers. Customers from each class a m v e  
according to Poisson distribution and require service according 
to ezponential distribution. Both classes minimue the average 
customer delay. 

Proposition 
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thcn the straight l ines ofthe team optimum fractions ( 4 ~ * ,  &I,  
for different class o amval rates A" ( Aa + AB 5 Cl t C,), in- 
terred at a srngle porn! 

i.e. thir intcrsectwn point U independent of the chcrss a ar- 
rival rate. 

As we have seen we have a set of optimum routing &action 
pairs (d?*, I$!*) that all achieve the same global minimum delay. 
However. these optimum routing fractions will give different av- 
erage delays for each class. Sa we can choose the operating point 
using another delay objective. In Fig. 2. we show the difference 
in the average delay of class o and class B customers. J"' - J6*,  
versus the class o optimum routing fraction. @:*, for fixed server 
capacities. C1 = 2. C2 = 1. fixed class p arrival rate, AB = 1, 
and different class a arrival rates. A" = 0.1 ...., 1.9. An example 
is when it is desired that both classes have the same average 
delay. Then this point will be the intersection of the delay dif- 
ference line and the zero delay difference line. The operating 
point for this case is the same as the solution of section 3, where 
we aggregate the two classes into a single class and therefore 
we treat them similarly. Another example is when there is a 
secondary objective that class a should receive better treatment 
than class 8. Then the lowest point of the delay difference line 
J"' - J@* is chosen. 

5 .  NASH EQUILIBRIUM 

In this section, we find the optimum routing decisions, when 
each class chooses the best strategy for its customers given the 
decision of the other class. Class 0 assigns its customers to the 
two servers such that the average delay of its customers is mini- 
mized. Similarly. class D assigns its customers to the two servers 
such that the average delay of its customers is minimized. There- 
fore customers of different classes do not have the same objective 
and they compete for sharing the two servers. We formulate and 
solve the above multiobjective optimization problem as a non- 
cooperative Nash game [I] between the two classes. After reach- 
ing a Nash equilibrium. no class of customers will have a rational 
motive to unilaterally deviate from its equilibrium strategy. 

Class a solves the following problem : 

minimize 

w i th  respect to 4?, 43 

such that 4f+4;=1,  4Jy, 4; L O  

The objective function J"(+y,@,&*, &*) is convex with 
respect to (I$?, 4;) over the convex space @ + 4; = 1, dy, 4; 2 
0, for C1 - A "  1: $7 - A@ * 4; > 0 and Cz - A" * 4; - A B  * &  > 0. 

Class B solves a similar problem using the optimal value for 

When the pkyers are in a Nash equilibrium, no player can 
(#*.4r). 

improve his cost by altering his decision unilaterally. Nest, we 
give the definition of a Nash equilibrium [l] in our context: 

Definition : A vector [4?.@,4f,&] with &' + 4; = 1, 
& -C 4: = 1, and @, @, $!, 4: 0 is called a Nash 
equilibnum for a two-class routing game iff 

Therefore each class minimizes its average customer delay 
given that the other class has minimized the average delay of its 
customers. 

Proof of existence and uniqueness of a solution can be found 
in our report [ E ] .  Next, we find this unique Nash equilibrium for 
the above routing game. 

Define the auxiliary variables 

c, + cz - A" - A@ Jc, - A" * qy- 
A@ - JC, - A" * &ly- + Jcz - A" * @ 

Nf-(@?-) = 

Then, the following policy [ E ]  will route the arriving cus- 
tomers to the two servers such that a Nash equilibrium is achieved: 

I f  0 I A" 5 Cz - ~ ( C I  - A@)Cz and 
0 I A@ 5 c1 - JC>(C2 - A"), 

A- 
A@ 
A@ 

25.2.3 
0599 



c then & = 0, 4:- = 2 - "(0) 
accept the solution only zf 

AB 5 c2 - x o s y  - J(C, - X"4?.)(C2 - Po;-) 

Of course. the Nash equilibrium routin fractions to the other 

In order to find the Nash equilibrium routing fractions (0:'. &) 

aerver are 6;. = 1 - @?* and 4:' = 1 - dl f .  . 

for the first case of the Nash routing, we use a simultaneous ad- 
juatment algorithm. So, starting with @'(O) = &(O) = 0. we 
iterate according to  the following algorithm: 

In Fig. 3, we show the average delay difference between the 
two classes J"' - JB' for fixed server capacities C1 = 2, Cz = 1, 
fixed class @ arrival rate A* = 1 and different class a arrival 
rates A". When the class a arrival rate is equal to the class 
P arrival rate A" = A@ = 1, then both classes have the same 
average delay. When a class has larger arrival rate then it also 
has larger average delay. For a very small class a arrival rate A", 
we notice something peculiar: the average delay difference curve 
is not monotonic with the arrival rate. This happens because 
for these values we hit the boundary (4p* = l), as we see in Fig. 
8. 

In Fig. 4, we show the Nash equilibrium routing fractions 
of the two classes by* and &, for fixed server capacities, C1 = 
2, Cz = 1,. fixed class @ arrival rate, AB = 1 and different class 
a arrival ratea, A". We I K ~  that for very amall class Q arrival 
rate A", h a  a uaes exduaively the faster aerver 1 (4:. = 1). 

For e q d  arrival rates Aa = AB = 1, the Naah equilibrium rout- 
ing &actions intersect a t  the point dy* = &. As we increase 
the arrival rate they depart each other to  meet again when the 
arrival rate becomes large. 

5. CONCLUSIONS 

In this paper, we formulate and solve a two class routmg 
problem. When the two classes of customers cooperate to  mini- 
mise the average customer delay, then we formulate and solve the 
problem as a team optimization problem. When the two classes 
of crutcanerr compete among themrclvea and each class wants to 
"iw the average delay of its own customers, we introduce 

an alternative utethodology for multiobjective performance op- 
timisation. In thia cw, we formuhe and solve the problem as a 
non-cooperative Nash game. Each class of customers chooses the 
best strategy for its customers. A Nash equilibrium is achieved, 
where no class of customers has a rational motive to unilaterally 
depart from its strategy. 

In summary, we have presented a novel approach which leads 
itself to multi-objective optimization problems. 
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Fig. 1 The optimum routing probabilities (4r, 8') for fixed 
server capacities C1 = 2 and Cz = 1, fixed class p arrival rate 
AB = 1 and Werent class a d v a l  rates Xu = 0.1, ..., 1.9. 
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47* 

0 1 2 

A" 
Fig. 3 The difference of the Nash 'equilibrium average delays 

of class a and class p, Ja' - J@*, for k e d  server capacities 
CI = 2 and Cz = 1, fixed class p arrival rate AB = 1 and 
different class a arrival rates. 

+ rta-0.1 
+ h0.2 
+ jla=0.3 
+ Ea=0.4 
* Ja=O.S 
+ Ea-0.6 

- 
+ b 1 . 8  0 1 2 
+ ;la-1.9 

A" 

+ da=0.7 
+ aa=0.8 
* jla=0.9 
+ ila=l.O 

0.2 

* 3a=1.2, 
* jla=1.3 
+ daz1.4 - ila=1.5 
- AaZ1.6 
+ la=1.7 n n l  

Fig. 2 The difference of the optimum average delay of dass 
Q minus the optimum average delay of dass p, J"' - J", for 
fixed server capacities Cl = 2 and C1 = 1, fixed class /3 arrival 
rate AB = 1 and different class a arrival rates Xu = 0.1, ..., 1.9. 

Fig. 4 The Nash equilibrium routing probabilities of class 
a, dT* and class p, 4f*, for fixed server capacities CI = 2 and 
CZ = 1, fixed class 6 arrival rate AB = 1 and diffamt class a 
arrival rates Xu.  
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