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Abstract

This paper investigates the routing of packets
in a network in which the link error rates vary. A
queueing network model that incorporates the ef-
fect of the link error rates is developed and is used
to find optimal routing assignments for fixed error
rates. Single and multiple path dynamic routing
algorithms, that minimize the average packet de-
lay or the failure probability of packet transmis-
sion are proposed. In case the network state is
not exactly known, stochastic learning automata
are proposed to drive the routing process.

1. INTRODUCTION

In studies of network optimization, performance and
reliability have been extensively discussed. Network per-
formance evaluates how well the network performs, given
it is functioning correctly. Network reliability analyzes the
probability that the network has not failed by time t, given
it was fully operational at time 0. These two fundamental
issues in network design are strongly dependent. However
only recently, have they been considered together, in a
composite measure called performability [7].

Network components, as in any physical system, are
subject to failures. Extensive literature exists on investi-
gating the network connectivity among two or more nodes
under network component failures, for example [3]. How-
ever little work exists on how to design protocols that
make use of reliability information.

Networks provide the medium for information trans-
mission from one site to another. A primary factor of
network performance is route selection. Not suprisingly,
much work exists on this very important problem, for ex-
ample [1]. Since a network is a dynamic environment, i.e.
its state changes over time, optimal route selection should
be based on the current network state which is called dy-
namic or adaptive routing.
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Dynamic programming has been used for the dynamic
routing problem in a simple unreliable manufacturing sys-
tem. In [10], optimallity conditions for two machines where
only one can fail are derived. They conclude that closed
form solution would be very hard to obtain for large sys-
tems. Also in [4,12], switching policies for an unreliable
machine that routes external input to either of two other
machines are derived. In these papers, failure corresponds
to total loss of use of the component.

In this paper, we investigate the problem of routing
packets when there are many unreliable outgoing links to
the same destination (Fig. 1). The analysis can be easily
extended to a general network with unreliable links. A
queueing network model that considers the link error rate
is developed, allowing the optimal traffic assignments for
a static network to be found. For the non-static case,
single and multiple path dynamic routing algorithms that
tend to minimize the average packet delay or the packet
failure probability using stochastic learning automata are
proposed.

The paper is organized as follows : in section 2, we in-
troduce a queueing model that incorporates packet failure
probabilities. In section 3, optimal single or multiple path
routing assignments are found for the case of known link
error rates. In section 4, we use stochastic learning au-
tomata for single and multiple path dynamic routing that
minimize the average packet delay or the failure probabil-
ity of packet transmission. In section 5, we discuss how
the link state may be estimated. Finally, in section 6, we
draw some conclusions.

2. QUEUEING NETWORK MODEL

In this section, we develop a queueing network model
that incorporates the effect of the link error rates on the
average packet delay. The link error rate is modeled as
a feedback branch in the queueing model, since when a
packet transmission fails it is retransmitted (Fig. 2). Con-
sider a network node with one incoming and L outgo-
ing links to the same destination (Fig. 1) and Poisson
packet arrivals with exponentially distributed service re-
quirements, We are interesting in optimally routing the
packets over these links. We make the following definitions
about network traffic :
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1/p : mean packet duration.

C; ¢ link 7 transmission capacity, i=1,...,L.

A : packet arrival rate.

e;(t) : packet error rate on link i at time ¢, ¢;(t) € [0,1].

P;(t) : routing probability to link ¢at time ¢, P;(t) € [0, 1],
v Pi(t) = 1, and P?(t) = optimum P;(t) with re-
spect to some objective function.

Ti(t) : steady state average packet delay on link ¢ at time
t.

Define the adjusted normalized capacity

A
C,'(t) = [1 — e,‘(t)] * pox Ch.
Thus C;(t) is the link capacity in error free packets per

second at time ¢.

Modeling each link i as an M/M/1 queue, assuming
immediate knowledge of failure, we find

1
Ci(t) — A x Pi(t)
where of course : A * P;(t) < Ci(t).

Ti(t) =

3. OPTIMAL STATIC ROUTING

In this section, we develop optimal link assignments for
a static network state, i.e. in which the link states, e;(t)
and the routing probabilities, P;(t) are fixed and known,
i.e. we can use A x P; and e; as the packet arrival rate and
packet error rate on link <.

3.1 SINGLE PATH ROUTING

Here, we are constrainted to use a single path, it is
assumed that there is (at least) one link that has sufficient
capacity to handle the traffic.

i) MINIMIZE THE PACKET FAILURE
PROBABILITY OF A SPECIFIC USER

In order to minimize the packet failure probability of
a user, we should send each one of its packets over the
minimum error rate link. A user example is the network
operating system that sends control packets to the network
nodes.

Algorithm#1 :

Send to link i, where e; = Vj:Cnli-IZlA{ej}

ii) MINIMIZE THE PACKET DELAY
OF A SPECIFIC USER

In order to minimize the packet delay of a user, we
should send its packets over the minimum packet delay

link.

Algorithm#2 :
Calculate T;, at P; =1 Vj

Send to link i, where T; = min {T;}
ViCi>A

3.2 MULTIPLE PATH ROUTING

Here, we want to minimize a global objective function,
such as the packet failure probability or the overall net-
work average packet delay.

i) MINIMIZE THE PACKET FAILURE PROBABILITY

Order the links in order of increasing error rates, i.e.
e; < ez < ... < er and let an acceptable loading factor
be 0 < p < 1. The following trivial algorithm sends the
traffic to the most reliable links.

Algorithm#3 :
If 0 < A < pxCy, then send the traffic to link 1.

If pxCi < A < px(Cy +C2), then send p x Cy of the
traffic to link 1, and the rest A — p*Cy of the traffic
to link 2.

If p*(C1+Cz+u.+CL_1) <A< p*(C1+Cz+...+CL),
then send p x Cy of the traffic to link 1, p x Cy of the
traffic to link 2,..., and the rest A — p % (C; + C3 +
«.+ Cr_1) of the traffic to link L.

If px(C; +Ca2 + ...+ C) < A, then send p x Cy of the
traffic to link 1, p*C; of the traffic to link 2,..., p*xCr,
of the traffic to link L and disregard the rest of the
traffic.

These flows can be achieved by a probabilistic per
packet decision or round robin sceduling.

ii) MINIMIZE THE OVERALL NETWORK
AVERAGE PACKET DELAY

The overall network average packet delay is

N

L
T = Z P, *dg
=1
Order the links in order of decreasing (adjusted) ca-
pacity,ie. Cy > Cp > ... > Cr.
Using an approach similar to [1], we have several cases
to comsider.

Case 1 : Single Path Routing
When one of the links has very large capacity, C;, and

the traffic is light, all the traffic will be routed there. This
occurs when :
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8(Py +T) a(ﬂ * T,)
lpp=1 € =55 Ipy

1
T~ op =0 VI#L
which is true when
Ci
— VI#1
oy S
Rewriting, we have
VG xCG<C—AVIi#1
finally
0<ASVE +{VCi -G} VI#1

Case 2 : Two Path Routing

In this case, 2 links are selected and the marginal costs
on these two links will be balanced, i.e.

(P x Th) Ipe = (Pp * T) b < B(Pl * T)) Ie:
oP; : BPZ 2 = dP,
VI£1,2.

This will be true when

C1 _ CZ
{C = AxP}: {Ca—AxP;}

After some manipulation, we find

(N
Y Y
\/61*62
t e sy Ve Ve
P; = 1-P

The other links must satisfy a relationship similar to
case 1, i.e.

0< A< Ve +{VCi -
VI#£1,2.

Ve + VCrx {VC2 - Vai}

Case 3 corresponds when three paths are used, and so
on until Case L.

Case L : Full Multi-Path Routing

All paths are used and all marginal costs will be iden-
tical, i.e.

O(P; +T; 8 P *T L
Bt 1= o 1 v
This will be true when
G S vij

(G- A By (G- AxB}Y
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The optimal P} are thus given by :
o
xs z\/a

L 1 VG

VAR SV A
Vi

or

Z\/C *Cy

.\ .
I"‘Ev,x/c—erz\*Z\/E {VC: - Va}}

where of course

0<Ax P! <C;

The following algorithm will optimally assign the traf-
fic on the links.
Define

,
a2 3" V8 # {VCi — y/Cuir}
=1

and the total capacity for the k best links
A k
c.=2Y G
=1

Algorithm#4 :

If 0 < XA < oy, then send all the traffic to link 1.

If a1 < A < o, then send

¢ YCi*(Ce=X)

k

> Ve
=1
of the traffic to link1i,1 <i< k.

then send

L
Ifap1 <A< ZC[,

I=1

¢, - YCi*(Cr—X)

* L
Ve
=1

of the traffic to linki,1 <1< L.

In Fig. 3, we consider optimal routing for 2 links with
p=1,C1 = C; = 2,and A = 1. We plot the routing
probability to link 1 versus the link 1 error rate, for dif-
ferent values of link 2 error rate. When the link 1 error
rate increases, the routing probability to link 1 decreases.
The curve for zero errors on link 2 (e, = 0) shows that for
error rates on link 1 (e;) higher than 0.75 all traffic is sent
to link 2. The high error rate curve (e; = 0.9) stops at
e; = 0.6 since the system can no longer accomodate the
traffic.



In Fig. 4, we consider optimal routing for 2 links with
4 = 1,C; = 2, equal error rates e; = ez, and A = 1.
We plot the routing probability to link 1 versus the link 1
capacity for different values of the error rate. When the
link 1 capacity increases, the routing probability to link 1
increases. For low link capacities and high error rates the
links cannot accomadate the offered traffic. For high link
1 capacity all the traffic is serviced by link 1.

Next, we consider routing to 2 links with p=1,C1 =
Cy = 2,and e; = 0. In Fig. 5 A = 1, while in Fig. 6
A = 2. We plot the average packet delay versus the link 1
error rate for the case where the error rates are ignored,
T, i.e. half of the traffic is sent to each link and com-
pare to the optimal assignments, T'*. We see tremendous
improvement for high error rates.

Finally, in Fig. 7, we compare the average packet de-
lays T and T* for different arrival rates, p = 1,C, =Cp =
2,and ey = 0. We see again tremendous improvement for
high error rates.

Extensions of the queueing model can be done by con-
sidering M/G/1 queues. It can be shown [5, Problem 5.22]
that the Laplace transform of the total service time in a
M/G/1 queue with feedback is

(1 — &) x Bi(s)

oy (1
Bi(s) = 1—e; x B}(s)

where B}(s) is the Laplace transform of the service
time in the M/G/1 queue without feedback. In our case,
the B}(s) transform corresponds to the total packet ser-
vice time including retransmissions on link 4. The B}(s)
transform corresponds to the packet service time on a per-

fectly reliable link i (without retransmissions). Then the
z-transform of the number of packets on link 7 is

_ AxX;. (Q-e)x(1-2)xBf(Ax(1-2))
Qi(z)_(1—1—e,-)»(l—e;+e;*z)*B;(/\*(1*z))—z

From this we can find the average number of packets
on link 7 and from that the average packet delay on link i

f = 2*X;*(1—A*P,—*X})+/\*P;*IE?
T 2x(1— e —AxP*x X;)

where X; is the mean packet service time on a perfectly
reliable link i (without retransmissions).

1t is also straightforward to consider propagation de-
lays across the links Tprop,i, and processing delays in the
nodes Tppoc [6].

One numerical approach to finding P; is using learn-
ing automata theory {2, 8, 9, 11]. A learning automaton
works as follows. Whenever a performing action results
in a favorable outcome, the probability of performing the
same action is increased and the probabilities of the other
actions are decreased. When it results in an unfavorable
outcome, the probability of performing the same action
is decreased and those of the other actions are increased.
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For our case, the learning automaton increases the rout-
ing probability of the minimum marginal delay link and
decreases those of all other links at every step. It tends to
equalize the marginal delays of the links. Define P;(k) to
be the probability for link i at step k. Then the following
iteration can be used.

Suppose link i was selected at step k, with probability
Pi(k).

Set

DJ(’C) - a(Pj*Tj)

9P lpj=p;b) VI
I Di(k)=min{D;(k)} then
27

Pi(k+ 1) = Pi(k) + a % [1 — Pi(k))

Pi(k+1) = Pi(k) —ax Pi(k) Vj#i
else

Pi(k+1) = Pi(k) - p+ B(k)

Pk +1) = Bi(k) + 6« [ — Pi(b)

where 0 < f € a < 1.
where T; is any of the delay measures discussed above.

This approach to finding P? works even in the case
where the traffic processes do not follow any nice distri-
bution. Also, we can use as Dj, the real measurement of
the increase of the portion of the overall network delay
corresponding to link j due to the addition of new traffic
on this link.

4. DYNAMIC ROUTING

We now consider the- case where the error rates are
time dependent, i.e. e; = e;(t). In section 5, we discuss
how to estimate these error rates, for now we assume the
information is available. Thus we have é;(t) as the current
estimate for e;(t).

If these time dependent error rate estimates are accu-
rate at every time instant, then we can immediately use
algorithms 1, 2, 3, and 4.

On the other hand, if we have some uncertainty about
the error rate estimates, we do not want to overreact. A
way to smooth wrong routing decisions due to error rate
estimate inaccuracies is by randomization. For the mul-
tiple path dynamic routing, this is already done by the
optimal traffic assignment. However for the single path
dynamic routing the optimal decisions were deterministic.
Thus we introduce learning automata algorithms to learn
the optimum routing decisions These learning algorithms
route the packets probabilistically over the alternate links
and update these routing probabilities according to the
outcome of their actions (2, 9, 11].

Vi # .



i) SELECT A LINK PROBABILISTICALLY
w.r.t FAILURE PROBABILITIES

Let the time at which the k* packet arrives be tx.
Routing decisions (i.e., which link to use) are made at
update instants which for now we consider to be the same
as tg.

In order to increase the probability that the traffic will
be correctly transmitted, the most reliable link is selected.
This can be done either directly (choose probabilistically
among the link reliabilities) or through the routing prob-
abilities that will be updated by a learning automaton
scheme. At time ¢, a link is selected for packet trans-
mission. Whenever a packet is transmitted successfully,
then the probability to choose the same link is increased,
while the routing probabilities of the other links are de-
creased. Whenever a packet fails transmission, then the
routing probability of the selected link is decreased, while
the routing probabilities of the other links are increased.

Algorithm#5 :
Suppose link i was selected at time ty.

If successful packet transmission, then
Pi(tusn) = Pi(te) + ax [1 - Pi(ty)]

Pi(ties1) = Pi(te) —ax Pj(te) Vi
else

Pi(te1) = Pi(ts) — B * Pi(ty)

P(ti) = Py{te) + B[z — Py(te)]

0<f<gaxl

Another way to update the routing probabilities with
less overhead, (but also less accuracy) is to update less
frequently, for example at times 7, (Fig. 8). We assume
that link selection (based on the P;(tx)’s) is made at the
update points. Knowing that n;(7,) packets were success-
fully transmitted and u;(7,) failed during {7, 7,41), then
we must increase the routing probability of the selected
link n;(7,) times and decrease it u;(7y) times. In a similar
way we must decrease and increase the routing probabili-
ties of the other links.

Since we do not want to keep track of the exact se-
quence of occurence of the packet failures and successes,
we assume such sequences. There are several ways to ac-
complish this, for example :

i) Increase P; in n;(7,) updates, then decrease it in
ui(1,) updates.

ii) Let ni(7n) < ui(7,). Increase and decrease P; in
ni(7») updates, then decrease it in u;(7,,) —n;(7,) updates.

iii) Let ny(rm) > ui(7,). Increase and decrease P; in
u;(7) updates, then increase it in n;(7,) — ui(7,) updates.

iv) Decrease P; in u;(7,) updates, then increase it in
n;(7,) updates.

v) Let n;(7.) < ui(7,). Decrease and increase P; in
n;(7,) updates, then decrease it in u;(Tn) —ni(7n) updates.

vi) Let n;(7n) > u;(7n). Decrease and increase P; in
ui(7,) updates, then increase it in ni(Tn) — ui(7,) updates.

Vi # i
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By a same approach as in [2], we can solve these re-
currence equations and have Pi(1,4,) =Function (P(7,),
7i(7n), %i(74)). Thus instead of updating P;(r,,) at every
packet transmission success or failure, we update at the
times 7,.

Another approach is to increase the probability of the
link, if it had the best error rate performance. A learn-
ing automaton increases the routing probability of the se-
lected link if it had the minimum error rate and decreases
the routing probabilities of the other links. Otherwise it
decreases the routing probability of the selected link and
increases the routing probabilities of the other links.

Algorithm#86 :

Suppose link i was selected at time ty,:
If é,‘(t),) = Il\}ijn{éj(tk)}, then
Pi(ti1) = Pi(te) + a* [1 — Pi(te)]

Fi(tht1) = Pi(te) —ax Pi(tr) Vi
else

Pi(tir1) = Pi(te) — B = R(t{’)

Pilte1) = Pi(te) + B x [ — Pi(tx)]

0<fkaxl1

ii) SELECT A LINK PROBABILISTICALLY
w.r.t. MARGINAL PACKET DELAY

Here, we want to route incoming traffic in such a way
as to minimize the average packet delay, T, in the network.

T = Z R * Ti
Vi
In the simplest case this will happen when

O(PixT;) _ O(P;+Ty)
or, 0P
We propose a dynamic routing algorithm based on
learning automata theory, that converges to optimal rout-
ing. Whenever a link is selected and it gives the smallest
marginal delay, then the probability of selecting that link
again is increased. If it is not the best link, then the prob-
ability of selecting it again is decreased. The algorithm
tends to balance the first derivative packet delays on the
links. We use a step size that depends on the environment
state. The more unbalanced links the faster the conver-
gence, while as the links tend to be balanced, the step
size decreases to zero. The exponential function is a good
candidate to achieve this. It has rapid derivative and as
it tends to “steady state” it slows.

Vi, j

Algorithm#7 :
Suppose link i was selected at t;, »th probability P;(t,).

Set _
Dj(ty) a(Pj(tk) * Tj(tk))

3Pj(tk)

Vi#



Doin(te) = rr\y;n{Dj(tk)}
Dptas(te) = n%x{Dj(t,.)}

If Di(ty) = min {Dj(tx)} then
Pitus1) = Pi(ta)+ [ — ex(Dilt)-Darasltl)y
*[1 — Pi(te)]

Pj(tes1) = Pi(te)— [1- e+ (Dilte)=Daac(te)))x
*Pj(tk) Vi#1i

else

Pi(tip1) = Pi(te)— (1 — eP*Pmin(ti) =Dty

*Pi(tr)
Pj(tign) = Pi(ta)+  [1— eP*(Prnlte) =Dty

Al - Bt Vif

where a and f3 are scaling factors.

We could also consider other damping factors.

5. ERROR RATE ESTIMATES

In this section, we are concerned with how to estimate
the time varying error rates.

5.1 DIRECT MEASUREMENTS

When nothing is known about the behavior of the link
error rate, then the simplest way to estimate it is by count-
ing the number of packet failures and successes. Let
u;(t) : number of unsuccessful packets among the last M
packets, that were sent through link ¢ prior to time
t.

i) Then an estimate of the packet failure probability
on link ¢ is

i) Another estimate is the exponential smoothing

sy = (1)
&(1) = M
é;(tn):a*é;(t,,_l)+(l—a)*2{(—t"—) 0<ax<l

M

5.2 RELIABILITY MARKOV MODEL

There are cases where a link can be considered to be
in two states of operation with a different error rate in
each state. An example is a satellite communication link
under normal and hazardous conditions (eg. rain). In
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such a case we can model each link as a two state Markov
failure/repair model (Fig. 9). Depending on the link state,
traffic will suffer different error rates with the extreme case
of no errors when the link is good, and no throughput
when the link is failed.

We assume that as soon as a link fails its repair starts
and that failure and repair are Poisson processes. We use
the following notation:

G : good state

B : bad (failed) state.

7:(G,t) : probability that link iis in state G at time t.
w;(B,t) : probability that link i is in state B at time t.
€;(G) : error rate in state G, for link 7.

ei(B) : error rate in state B, for link i, with e;(G) <
e,-(B).

n; : failure rate for link <.

r; : repair rate for link 1.

We can also incorporate the measurements of the un-
successful packets in the Markov model. So, let the ran-
dom variables

ni(t — 7) : be the number of packets successfully
transmitted during [t — T,t), through link # and

u;(t — 7) : be the number of packets failed transmission
during [t — 7,t), through link <.

The probability that there will be u;(t—7) unsuccessful
packets on link 4, during the [t — 7,t) period, given link ¢
is in the Bad state, (throughout the [t — 7,t) period), is

Plui(t—7) /Si(t—7)=B]= ( nit = 7) +wlt - 7) ) .

‘u;(t—’r)

e B0 % [1 - (B

Also the probability that there will be w;(t — T) unsuc-
cessful packets on link i, during the [t — 7,t) period, given
link 4 is in the Good state is

wilt -7 (- =Gl = ni(t— 1) +ui(t - 7) .
Plui(t~7) /Si{t-7)=G]= ( ot )
*[e‘.(G)]u.‘(t—‘r) % [1 _ e‘,(G)}n,‘(t—'r)

The probability that there were u;(t — 7) unsuccessful
packets on link 4, during the [t — 7,t) period is

Plui(t - )] = Plus(t = 7)/8:(t - 7) = Gl x mi(G,t — 7)+

+Plui(t —7)/Si(t —7) = Bl xmi(B,t — )



Then the probability that link ¢ will be in the Bad
state during the [t,t + ) period, given that there were
u;(t — 7) unsuccessful packets during the [t — 7,t) period,
is by Bayes rule

P[S§i(t) = Bfui(t - 7)] =

= P[8:(t) = B, Si(t — 7) = G/ui(t — T)]+
+P[Si(t) = B, Si(t — 7) = B/ui(t — 7)] =

_ P[Si(t) = B, Si(t — 7) = G, ui(t — 7)] +
Plui(t — 7))

+P[S.~(t) =B, S8i(t—7) = B,ui(t - 7)]
Plu;(t — )}

_ Plu(t —7)/8i(t =) = G] * P[Si(t) = B/Si(t —7) = G]
Plui(t — 7]

*P[S;(t — 1) = G+

o Plus(t = )/Si(t = 7) = B]x P[S.(t) = B/Si(t —7) = B]
Plui(t — 7)]
+P[Si(t — )= B] =

_ Plu(t—71)/Si(t —7) = G)x 7y x (G, t — T)+
Plu;(t — 7))

Plui(t —7)/Si(t —7) = B] % (1 — ;) xmi(B,t — 1)

+ Plui(t — )]

Similary, the probability that link ¢ will be in the Good
state, during the [t,f + T) period, given that there were
ui(t — 7) unsuccessful packets, during the [t — 7,t) period
is

P(Si(t) = Glui(t - 7)} =

_ Plui(t—7)/Si(t —7) = Gl+ (1~ m)*m(Gyt = 7)
- P[u.-(t—‘r)]

+P[Ui(t— 7)/8i(t —7) = Bl*rixmi(B,t —7)
Plui(t - 7)]
i) Eventually, we let

e,-(G) * P[S,'(tn) = G/ug(tn_l)H—
+ei(B) x P[Si{t) = B/uiltn-)]

é;(t,—,) =

ii) Note also that we can use

é(tn) = {

ei(B) if P[Si(tn) = B/ui(ta-1)] > P[Si(tn) = G/ui(tn-1)]
e(G) o.w.
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5.8 LEARNING AUTOMATON MODEL

Another approach to estimate e;(t), will be the use of
learning automata [8]. In the following algorithm when-
ever a packet is successfully transmitted through a link,
then the probability that this link is in the Good state is
increased, otherwise it is decreased.

If successful packet transmission at time #;, then
7i(Gytk) = mi(Gyte—1) + a * mi( B, tk—1)
7i(B, te) = Ti( B, te—1) — a* mi( B, te_1)
else
(G, ti) = 7i( G, te—1) — B * 7i( By te—1)
Ti(B,tk) = 7 By tk—1) + B * mi( B, te-1)

Where 0 < a € 8 < 1.
i) So we can use

&i(te) = ei(G) * (G, te) + e;(B) * (B, tk)
ii) Finally another estimate will be

&(te) = {

5.4 NO STATE INFORMATION AVAILABLE

e.-(B) ifﬂ;(G,tk)( T;(B,t].)
e(G) o.w.

When no observations of packet successes and failures
can be done, then we will depend exclusively on the two
state Markov model. By solving the Markov Chain for
7:(G,0) = 1, we have in steady state

r
s G)= *
@ M+ ri
7
(B) =
m(B) 7+ 7

i) Finally, we let

. €(G)xri+ei(B)*my
M+ T

ii) Another way will is to let

N

Thus, we have proposed several error rate estimates
that can be used either when nothing is known about the
failure behavior of the link, or when the link operates in
two environments. We are currently working in extending
these estimates in cases where we have some more infor-
mation about the environment behavior.

Note also that wherever P}(t) = 0, the source node
continues to periodically send control traffic through this
link and update the u;(t).

e(B) ifngi>wn
ei(G) o.w.



6. CONCLUSIONS

In this paper, queueing network, reliability Markov
and Learning Automata models were introduced. Opti-
mal static routing algorithms for routing packets in a sim-
ple network were proposed. It is shown that which links
should be used is a function of the traffic loading. For low
traffic and very bad links (high error rate), we find that
these links will not be included in the set of routes selected.
Single and multiple path dynamic routing algorithms were
introduced.These algorithms minimize the failure proba-
bility of the packet transmission, or the overall network
average packet delay. We considered two cases regarding
the accuracy of the network condition measurements and
several approaches for estimating the link states.

We modeled the error rate with a two state Markov
model. This can be easily extended to a Markov model
with many states. Also in a similar fashion, we can model
the arrival rate (and service rate) with multiple state Mar-
kov models. In each state different arrival rate (service
rate) will be assumed.
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