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Abstract

In this paper we consider the load sharing problem in a multiprocessor, where different
classes of jobs have different priorities and each priority class optimizes its own objective
function. First, we formulate the problem as a leader-follower Stackelberg game, where the
high priority jobs constitute the leader and the low priority jobs constitute the follower.
Then we focus on a special case of two preemptive resume priority classes that share
a two-processor system. In this case, we find the Stackelberg equilibrium solution that
minimizes the average job delay of each class. An interesting result is that if both classes
have equal mean service requirements, when both processors are used, then the low priority
load sharing decisions are independent of the arrival rates. Also, for equal mean service
requirements and constant total arrival rate, the overall average delay of jobs from both
classes is constant, i.e. does not depend on the mix of high and low priority jobs. Finally,
we comment on our approach for multiobjective optimization of distributed systems with
multi-priority classes.

1. INTRODUCTION

The usual approach to distributed system design and control is the optimization of a
single function. If multiple objectives are desired, then the usual approach is to combine
the objectives as seen by the system administrator [2] into a single function. Thus, it is
assumed that all customers in the system are treated similarly and they cooperate for the
socially optimum, such as optimizing the average customer performance. However, in a
real distributed environment there is a diversity of customer classes, each with possibly
different objectives and different service and accounting requirements.In [6, 7], we have
taken a game theoretic approach for performance optimization of competing classes in
a distributed computing system. In those papers, we have formulated and solved the
routing problem among competing classes of jobs as a Nash game.

It is quite common to require differentiated service among different classes by assigning
different priorities to different classes, for example interactive jobs have higher priority
than batch jobs. A high priority class may acquire most of the resources that it needs,
while a low priority class should wait for the high priority class to complete service. Since
the reason for having priorities is to give preferential treatment to the high priority jobs,
it is not meaningful to define a single multi-objective function (ex. a convex combination
of the objective functions of the different priority classes) for global optimization across
all the priority classes simultaneously. However, we can still optimize the behavior of jobs
within each priority class. Therefore a different approach should be taken for performance
optimization of multipriority systems. In this paper, we formulate and optimize the
performance of different priority classes as a Stackelberg game. In [4], we have considered
the joint load sharing, routing and congestion control problem.
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For simplicity of presentation, we consider two priority classes of customers which select
between two servers. Jobs from the high priority class and jobs from the low priority class
arrive to a two-processor system requiring execution. The problem of deciding to which
processor each job will be assigned is the load sharing problem [9, 3] (Fig. 1).

2. QUEUEING MODEL

In this section, we introduce a simple queueing model of two servers that are shared
by customers of two priority classes (Fig. 1). The problem is to assign these customers
to the two servers so as to minimize the average delay of each class. An application is
load sharing for a multiprocessor system, where interactive jobs (high priority) and batch
jobs (low priority) may use two processors for execution. Another application is routing,
where voice packets (high priority) and data packets (low priority) may use two different
links for transmission between source-destination.

Let the high priority class a jobs arrive to the system with rate A* (Poisson arrivals)
and require service times with mean 1/p* (exponential). On the other hand, the low
priority class 3 jobs arrive to the system with rate A® (Poisson arrivals) and require
service times with mean 1/u” (exponential). Jobs of both classes may be served at either
of the two processors, which have service rates C; and C,, respectively. Furthermore, for
stability reasons it is assumed thatﬂthe total arrival rate of service requirements is less
than the total service rate : A— -+ -)-t— < C; + C,.

The fraction of class c € {a,ﬁ} JObS assigned to server 1 € {1,2} is ¢¢, where ¢5 +¢5 =
1, ¢7,¢5 > 0, such that its cost function J°(¢, ¢3, qﬁf,cﬁg) is minimized.

In the following sections, we formulate and solve the load sharing problem of two
processors among two priority classes as a Stackelberg game. Due to space limitation, we
ommit the proofs which may be found in [5, 4].

3. STACKELBERG EQUILIBRIUM

In this section, we consider the load sharing problem, when two priority classes, with
different objectives, share two processors. We formulate this priority multiobjective op-
timization problem as a non cooperative Stackelberg game [1] between the two priority
classes.

Next, we give some definitions for a two-priority class (any kind of pnontles) game
similar to those in [1] for Stackelberg games:

Definition 1: In a two-priority class finite game, with the hzgh priority class a as the
leader and the low priority class B as the follower, the set RP(¢$, #%), defined for the high
priority strategy (¢7,$3) that satisfies ¢ + ¢35 =1, 5,45 > O, by:

R‘B( 1) ﬁf’g) = { (‘?b?) @Sg) such that ‘#13 + ¢B :ﬂla gbf,qﬁg >0:
TP(45, 45, 41, 47) < TP(4%, 45, L, PY),
V (PP,PP), such that P{+Pf =1, PP P2 >0}
is the optimal response (rational reaction) set of the low priority class 3 to the strategy
of the high priority class a.
What the above definition says is that the low priority class 3 finds the set of its
controls (¢5,¢%), that minimize its cost function JP(¢$, 45,47, ¢5), for given strategy
(9%, ¢%) of the high priority class .




Definition 2: In a two- prion'ty class finite game with the high priority class a as

the leader, a strategy (%, #5*), such that ¢3* + ¢5° 1, ¢3*,¢5* > 0, is called a
Stackelberg equilibrium strategy for the leader if :
st JE(f=>, o ¢B ¢ﬁ i saf ch( a,ql)a’qbﬁ ¢ﬁ
(82 48RP (65 05) (¢1%, 82" ¢1,¢2) (8 YRR (52.43) 192,91, ¢2)
YV (¢F,95) such that ¢ + o5 =1, ¢%,¢%>0.
This means that the high priority class a ﬁnds the set of its optimal controls (¢$*, g"")
that minimize its cost function J*(¢%, ¢3, 4~ ,gbz) given the optimal response set Rﬁ (96

of the low priority class 3 to its stra.tegy (3%, ¢5%).

Definition 3: Let (¢3*, ¢5*), such that ¢3* + ¢5* = 1, 98t > 0, be a Stack-
elberg strategy for the leader a. Then any element (¢5", 45" € RB(43*, ¢5%) is an op-
timal strategy for the follower B that is in equilibrium with (¢S*,¢5*). The strategy
(¢o*, 2, d*, ¢2*) is a Stackelberg solution for the game with the high priority class o
as the leader and the cost pair J*(¢$*, ¢5*, &} ,qﬁ‘s'), JB(p2*, go*, & Be 2 ) is the corre-
sponding Stackelberg equiltbrium outcome

So, after the high priority class a has found its equilibrium strategy (5%, 95*), then
the opt1mal re3ponse set of the low priority class 8 is given by RP(¢%*, ¢5*). Any element
g8y e RP(42*, $*) is an optimal strategy for the low priority class .

4. PREEMPTIVE RESUME PRIORITY LOAD SHARING

In this section, we give a simple example for two preemptive resume priority classes of
jobs that share two processors. When a high priority job is assigned to a processor, if there
1s another high priority job there, then it is put in the queue. If there are only low priority
jobs there, then the low priority job is preempted and the high priority one starts been
executing immediately. When all the high priority jobs have finished receiving service,
then the low priority job that was preempted resumes and continues receiving service
[8, 2]. The high priority class « (leader) assigns its jobs to the two processors, such that
the average delay of its jobs is minimized. On the other hand, the low priority class 8
(follower) assigns its jobs to the two processors, such that the average delay of its jobs
1s minimized, after the high priority class a has optimally assigned its jobs. Thus a
Stackelberg equilibrium is achieved.

4.1 General Two Class Solution

The cost function that we use for the high preemptive resume priority class « is its

3 BE %
average job delay [8]: J*(¢%,¢3) = Z—/{LT(Z:
i=1 ] — "b
°‘C’
Similarly, the cost function for the low preemptlve resume priority class 3 is its average
5 1 A% S A%
2 @i * [#ﬁc_ - 1=C; % pPC; + (#ag_)z]
job delay [8]: Jﬂ(ﬁﬁ?:f?f'gaﬁbf,ﬁbg) =D, a‘ o : o ; B ﬂ‘ ’
i=1 (1_A¢;)*(1_A¢;_A¢a)
Tl }Laci F"GC:'

The overall average job delay is:
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Theorem 1 : There exists a Stackelberg equilibrium.

The high preemptive resume priority class « solves the following problem:

2> a
minimize J*(dF, 95 )= 5__: MQC’LW;
with respect to ¢, ¢F
such that ¢r+é3 =1, &1, ¢ =0.

On the other hand, the low preemptive resume priority class 3 solves the following
problem:

C:' Aa¢q* Aaqb{_:ﬂ
8 o k. iy i
- #rlE s T ey

mtnzmzze Jﬁ(é‘;‘j ?*} ¢?) ¢§) = Z: a o * B 8
] 'u,a ] F»a P]ﬂ

with respect to 456, ‘;ﬁf
such that Qﬂf‘f“qbg =1, 'ﬁ;’ ¢§ = 0.

_Then, the following policy allocates the arriving jobs to the two servers such that a
- Stackelberg equilibrium is achieved:

(2]

If F < C: + O,
then
A= A=
TF Ol—valcz SF'T and C, —+/C1C, Sy_a
Ci1+C A7
1 = o
then ¢ = ioll = — B 4 :
A% A% VO ++/C
#C! poz

If 05%301_1/0102

then ¢2* =1

If 0<X <o, - /o
#a

then ¢2* =0



If ;,,F <Cy+C3
then
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Of course, the equilibrium load sharing probabilities to the other server are ¢5* =
1 — ¢¢* and ¢’3 SR qﬁ'a *. Substituting these equilibrium probabilities into the average
delay functions, we have the equilibrium outcome of the game (5, 4].

4.2 Interesting Results

From the above equilibrium solution and outcome of the game, we have some inter-
esting results:

Proposition 1: For a given system C; > C,,
ifp*=pP =p, X242 < p(Ci+Cs), and X* + AP = )\ = constant,

then J(¢3*, 4%, ¢2*, ¢5°) = constant

The above proposition says that for equal mean service requirements for both priority
classes and constant total arrival rate, the overall average job delay is constant, i.e. it
does not depend on the mix of high and low priority jobs.

In Fig. 2, we show the equilibrium average delay of the high priority class a, J*($$*, ¢5*),
of the low priority class B, JP(¢*, 5%, 41 ,¢5 ), and of the system J(¢S*, *,qﬁf*,qbg’)



o
versus different mixes of the high and low priority arrival rates B for fixed server ca-

pacities C; = 2,0, = 1, fixed total arrival rate A* + M = 2.5, and equal mean service -
requirement of the high and the low priority jobs 1/u® = 1/u? = 1. We note that the
overall average job delay is constant and independent from the mix of the high and low
priority jobs.

Proposition 2: For a given system with C; > C, and p* = wP = p,
if u(C1+ C3) < A%+ NP and Cy — /C1C, < A%/,
then gbf* — UL, e R VG

What the above proposition says is that for equal mean service requirements for both
priority classes, when the high priority class a uses both servers, then the equilibrium
decisions of the low priority class B are constant and independent of the arrival rates
(A%, AP). This result is not intuitive, because we might expect that the load sharing
decisions for the low priority class 8 should also depend on the arrival rates (as it is the
case for the high priority class a). It is also very important, because even when the arrival

rates vary over time, the load sharing policy for the low priority jobs remains the same
(Fig. 3).

Proposition 3: For a given system Cy > Chy:

A% )P VO
f — 4+ — Cy + C,, th B Ly N TR
Ef o #’3 =¥ 1 2 En @51 \/CT]_—J- \/(/Tz

H

The above proposition says that even for different service rqujrements for the two
priority classes, when the total arriving service requirement — 4 A—ﬁ approaches the total
service capacity C; + C,, the load sharing decisions for the low priority class 8 become
constant and independent from the arrival rates.

In Fig. 3, we show the equilibrium load sharing probabilities of both the high priority

- — . e i

class a, ¢7*, and of the low priority class 3, gﬁ? , versus the system load Gt
for fixed server capacities C; = 2,C; = 1, equal arrival rates \* = \® and different ratio
of the mean service requirement of the high and the low priority jobs 1/u* = 2/uP =
1, 1/!"&:1/#'6: ) 1,/;,,46:2/#0::1_ = = . 5

For equal mean service requirements of the high and low priority jobs, we note that
when the high priority class o uses both processors (0 < ¢2* < 1), then the load sharing
decisions ¢2* for the low priority class § are constant and independent of the arrival
rates A%, M?. That means that even if the arrival rates change during operation, our load
sharing algorithm will still perform ”optimally” for the low priority class. For different
mean service requirements of the high and low priority jobs, we note that when the
A% p® + N8 [P
. Ci+ C; p
priority class 8 approach the same constant value as for the case of equal mean service
requirement.

approaches 1, then the load sharing decisions ¢?* for the low

system load



5. NUMERICAL RESULTS & DISCUSSION

In this section, we discuss some other results that can be derived from the solution of
the two processor load sharing problem among jobs from two preemptive resume priority
classes.

5.1 Constant A=

Consider a two processor system C; < C, with fixed arrival rate of interactive (high
priority) jobs A* = constant. If this multiprocessor is also to be used by batch (low
priority) jobs and we want to secure an upper bound on the average delay of batch jobs
JP < Jf, then we should restrict the arrival rate of the batch jobs up to an upper limit.
For example, if u* = p? = p, Case 1, then

(VO]_-"\,.Cz)Z <Jﬁ
A ST ikt
px(Cr+Cy——)*(C; +Cy — — — —)
L H

H

c\mz
}\‘BS[L*(O]_-*—GZ)'—AQ— ( 1+ 2
ﬂqa+gﬂ—)

In Fig. 4, we show the equilibrium average delay of both the higher priority class
a, J“(qbl*,qﬁg"), of the lower priority class 3, JP(42*, g‘,g{);,(;‘:g"), and of the system
J ( T, D5, D1, dﬁﬁ*) versus the low priority class 3 arrival rate, AP, for fixed server capacities
Ci = 2 Cz = 1, fixed mean service requirements 1/p* =1/ ‘u.’6 1 and fixed high priority
class a arrival rate A* = 1.0. So, for example, if the average delay of batch jobs J? should
be less than 10, then the arrival rate of batch jobs should be A? < 1.71.

5.2 Constant )\?

Next, consider a two processor system C; < C, with fixed arrival rate of batch jobs
(low priority) AP = constant. If this multiprocessor is also to be used by interactive jobs
(high priority) and we want to secure an upper bound on the average delay of batch jobs
JP < JB, then we should restrict the arrival rate of the interactive jobs up to an upper
i Iumt For example, if u* = pf = p, Case 1, then : :

(VT + VY ef

A I
*(C1+Cr——)*(C1+Cp— — — —)
P K (o
2P 1 +/C3)?
/\“5#(01-1'02)—?“J(2) P(\/_Jﬁ :

In Fig. 5, we show the equilibrium average delay of both the higher priority class
a, J"‘(qbl ! 2 ), of the lower priority class 3, J?(¢%*, gﬁl,qﬁﬁ'), and of the system
J(¢3*, ¢3*, %, #5°) versus the high priority class & a,rnva.l rate A%, for fixed server capac-
1t1es Cy = 2,0, = 1, fixed mean service requirements 1/p* = 1/ ,w‘-" = 1. and fixed low
priority class B a.rrival rate A = 1.0.
So, for example, if the average delay of batch jobs J? should be less than 10, then the
arrival rate of interactive jobs should be AP < 1.59.



5.3 Constant )

Thirdly, consider a two processor system C; < -C, with fixed total arrival rate of both
interactive and batch jobs A* + A = X = constant. We want to determine what mix of

interactive and batch jobs will secure an upper bound on the average delay of interactive
a

jobs JSJg as well as on batch jobs J? < JZ. Let k = 17 be the mix of interactive over
batch jobs. Then we can write the arrival rate of interactive jobs as A* = Eri A and the
arrival rate of batch jobs as A% = k—i—l,\. For example, if u* = p? = 1, Case 2.2, then
i J§ * puC
I > SR )
kE+1
pCy pCy * [J8 % (uCy — A) — 1]

<J; = k<

k ]
(86 — M) sl —4) w0y = Jo * (uCy =AY
In Fig. 2, we show the equilibrium average delay of both the high priority class
a, J($5*, #5*), of the low priority class B, JP($e*, 43", #1, q&f‘), and of the system
A&
J(PT*, 5™, 4L, qbf') versus different mix of the high and low priority arrival rates k = %’
for fixed server capacities C; = 2,C, = 1, fixed total arrival rate A = A* + X\? = 2.5, and
equal mean service requirement of the high and the low priority jobs 1/u* = 1/pf = 1.
So, for example, if the average delay of interactive jobs should be less than 2 and the
average delay of batch jobs should be less than 10, then mix of interactive and batch jobs

A
ShOUld be /\_.B < 2.8.

5.4 Different Server Rate Ratios

Finally, in Fig. 6, we show the equilibrium probability to processor 1, of both the high

A B
Cy+ Cs

A* = M, equal mean sevice requirements 1/u* = 1/p? = 1 and different ration of the -

service rates of the two processors 51 =5,4,3,2,1.1/2. 118114, 115,

2
When the service rate of server 1 is substantially larger than the service rate of server 2,

(C1 = 5%C,), then server 1is used exclusively for almost all arrival rates. When the service
rates are C; = 4 x U5, then for low and medium load, server 1 is exclusively used, but for
heavy system load, server 2 also is used. When the service rates are Cy; = 3% Cs,, then the
slow server starts been used for lower system load. When the service rates are C; = 2xC,,
then the slow server starts been used for even lower system load. When the service rates
are equal C; = C,, then both servers are used equally (§2* = ¢3* = ¢§* = ¢5* = 0.5).
Now, when server 2 is faster, a similar scenario happens, i.e. the faster server 2 is, the
more it is exclusively used.

and low priority classes versus the system load equal arrival rates

6. CONCLUSIONS

In this paper, we formulate and solve a priority load sharing problem. Real distributed
systems assign different priorities to different classes of jobs, in order to give preferential



treatment to some classes of jobs. Therefore, it is not meaningful to optimize a single
function over all different priority classes simultaneously. In this paper, we introduce
an alternative methodelogy for dealing with multipriority optimization problems. We -
formulate a two-priority class load sharing problem as a Stackelberg game with leader the
high priority class and follower the low priority class. Furthermore, we gave the explicit
solution when two preemptive resume priority classes want to minimize their average job
delay. We found that for equal mean service requirements of jobs from both classes, when
both processors are used, then the decisions of the low priority class do not depend on
the arrival rates, i.e. even if the arrival rates vary, the same routing probabilities can be
used for the low priority jobs. Also, for equal mean service requirements of jobs from
both classes, when the total arrival rate of jobs is constant but the mix of high and low
priority jobs varies, then the overall average job delay remains constant.

Straightforward extensions are to consider multiple priority (> 2) classes, as well as
more than two servers. This is the first study that formulates and solves a multi-priority
resource allocation problem as a Stackelberg game. We have also formulated and solved
the joint load sharing, routing and congestion control problem as a Nash and a Stackelberg
game [4].
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Fig. 2 Stackelberg equilibrium average delay J°, J? and J
j\irsu.s different mix of the high and low priority arrival rates
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