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The STAR Automaton: Expediency
and Optimality Properties

Anastasios A. Economides and Athanasios Kehagias

Abstract—We present the STack ARchitecture(STAR) au- [6] which appeared to be more adaptable. Classic examples of
tomaton. It is a fixed structure, multiaction, reward-penalty VSSA areLy_p, Lr_;, and Li_.p. An excellent overview
learning automaton, characterized by a star-shaped state transi- of the theory and applications of “classical” VSSA appears in

tion diagram. Each branch of the star containsD states associated 41 F t licati th deri f dt
with a particular action. The branches are connected to a central [4]. For some more recent applications, the reader is referred to

“neutral” state. The most general version of STAR involves prob- [7]-[13]. New VSSA algorithms have also appeared in the lit-
abilistic state transitions in response to reward and/or penalty, but erature, e.g., the so-ca imatoralgorithms , an
bilisti itions i d and/ Ity, b t th llestimatoralgorith 14], [15] and
deterministic transitions can also be used. The learning behavior pursuitalgorithms [14], [16]. An interesting development in the
of STAR results from the stack-like operation of the branches; fig|q of VSSA is the introduction ddiiscretized/SSA. This idea
the learning parameter is D.. .By mathematical apa}y&s, it is has been introduced by Oommen [17]. In [18] and [19], action
shown that STAR with deterministic reward/probabilistic penalty - y : ’
and a sufficiently large D can be renderede-optimal in every Probabilities are updated by the usual VSSA rules; however,
stationary environment. By numerical simulation it is shown only alarge bufinite number of discretized probability values is
that in nonstationary, switching environments, STAR usually ysed. As pointed outin [18] and [19], itis difficult to shevop-
°“tperf°m;s classical variable structure automata such adr—r,  {imality for the multiaction discrete VSSAs. For a comparison
Lp-r,and Lp-cp. between continuous and discretized VSSA, see [20] and [21].
Index Terms—Adaptive systems, e-optimality, learning au- It can be seen from the above references that current learning
tomata, nonstationary environment. automata research is concentrated mainly on VSSAs. On the
other hand, FSSs are easier to implement and require less
|. INTRODUCTION computation per time step. This motivated us to return to the
ARLY Konl ing developed in th text of thFSSA idea and search for FSSA designs which perform as
workon learning developed in the context ot mathy, o o petter than corresponding VSSAs (e.g., are expedient,

ematical psychology [1]-{3]. Leaming is the ability to im-e §Etimal, converge quickly, etc.) Good performance combined

prove performance using past experience, and is necessaryv\; simplicity of implementation would make such FSSAs
adaptive decision making in a random environment with Chara&'tractive competitors to the currently used VSSAs

teristics which are unknown, difficult to describe, or difficult to In this paper, we introduce the STar ARchitecture (STAR)
quantify. The theory olearning automatgd] provides a frame- automaton, an' FSSA with the above-mentioned properties,

work for the design of automata (i.e., simple entities) which ir}i-nd compare its behavior to that of several “classical” VSSAs
teract with a random environment and learn dynamically the e}?émely Li p, La 1, and Ly .p. (The comparison to ’
’ —I —1> —€L

tion th_atW|II produce the most desirable environment respon scretized VSSA will be performed in a future paper) As
Attimesn = 1, 2, ..., an automaton selects one of sever

: . i . ; ntioned, we are particularly interested in the behavior of
available actions, according to action probabilities determin AR in nonstationary enviroments (the importance of which
by the current state. The environment provides a random f

o0 th . lected: th be f bl further discussed in Section Il). We present computer simula-
sponse fo the action selected, the response can be Tavorabl€y G\ nich indicate that STAR) can outperform VSSAs such

ward) or unfavorable (penalty). Depending on the environme I I, : ;
X _p, Lr_r, and Lg_.p. We believe that the improved
response, the automaton changes state. When the action pb%l? f-Py Rl el P

bilit ' h stat in time-i ant haviixad formance of STAR is due to the use of a few discrete values
aoriies of €ach state remain ime-invariant, we nha " of action probabilities. This minimizes the requirements on the
structure stochastic automaton (FSSWA)hen the action proba-

bilit h in i h - ble-struct tochasti random number generator and speeds up convergence.
ilities change in time, we havevariable-structure stochastic ' o hame “STAR automaton” refers to the star-shaped
automaton (VSSA)

structure of the transition diagram, displayed in Fig. 1(a).

t'l;jhe tthegg/Aofsleirr:mg.iutomtat?.f\f[va:js;ng}ugutraéed ;N\'/tg Sﬂﬁeach branch of the star consists of several states, which are
study o [5]. Later, interest shifted to the study o ’Qbommitted” to one of the actions available to the automaton;

in addition, each branch behaves like a stack. dépthD of
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1) & ={1, 2, ..., s} is the set of the internal states;
2) a = {1,2,...,r} is the set of actions (output of the
automaton);
3) B = {0, 1} is the set of responses (input to the au-
tomaton);
(@) 4) F(., ., .): Pxaxf[ — & isthe state transition mechanism

according to which the next state is chosen (depending on

3D) ... @m@mm the current state and the environment response);

f 5) G(.): ® — « is the action selection mechanism ac-
@ cording to which the next action is chosen (depending on
the current state).
At each instant, the automaton selects randomly [according
to the action probability vectqr(n)] an actiona(n) = i from
the finite action sed. The probability that the automaton selects
(b) actioni, at timen is the action probabilitp;(n) = Pr[a(n) =
Fig. 1. (a) Structure of STAR). (b) Structure of STAR?). i]; we have) :_, pi(n) = 1 Vn. The environment responds

with 3(n); when the response is favorable (rewafd)) = 0,

hen it is unfavorable (penalty(n) = 1. The environment re-

An essential feature of STAR is that the reward and/or penaﬁl onse to action is chosen according to the unknown penalty
mechanisms can be probabilistic (depending on parameter robability ¢; = Pr[#(n) = lja(n) = i ¥i. Thus, the en-
ands, respe<_:t_|vgly). It must be noted thiéie determ|n|st|c '€ vironment is characterized by the set of penalty probabilities
ward/probabilistic penalty STAR) can become-optimal in = e ¢,}. The environment reward probability ds —

any environment by ap_propriatg c.hoiceDfand 6.1 Further- l—ciyi = 1, ..., r. The environment penalty probabilitiés;
more, numerical experiments indicate that the value= 2 are unknown to the automaton.

gives consistently good results in a wide variety of environ- It is desirable that the automaton selects the action associ-
ments. . . - .
. . . ated with the minimum penalty probabilityy = min;{c;}. Au-

The .rest of the paper is organized as foIIows._In Sec’non bmaton performance is usually evaluated by the average cost
we review the fundamental concepts of stochastic learning 45 a given action probability vector/ (n) = E[3(n)|p(n)] =
tomata. In Section Ill, we present STAR with defth= 1 and Pr(8(n) = lp(n)] = ST, PrlB(n) = 1ja(n) = ipi(n)

- = Zui=1 = = Wb

prove its optimality properties. In Section IV, we present STAR " eipi(n). Thus, the actiom* producing the* is the

with depthD) > 1 and prove its optimality properties. In SeC'best action. With na priori information, the automaton selects

tion V, we present computer simulations to compare the perf%rétions with equal probability; (n) = 1/r,i = 1, ..., r. This
mance of STAR to t_hat OLp_p andLp_cp. Elnally, in Sec- is called gpure-chance automatoithen the average cost is the
tion VI, we summarize, present our conclusions, and Propo$E . of the penalty probabilitie, — (/05 e
some directions for future research. Learning can take place by repeated application of the fol-
lowing procedure: the automaton chooses an action according
Il. FUNDAMENTALS to the current action probability vector and updates this action
In this section, we present the standard mathematical defiRrobability vector according to the environment response.
tion of the learning automaton model. This involves the definHopefully, this procedure leads to selection of the best action
tion of the automaton itself, the environment with which it interor, at least, reduction of the cosf(n). Formally, the action
acts, the objective of this interaction and the learning method p&obability vector at timen, p(n), is updated by a learning
discussion of stationary and nonstationary environments is aflgorithmT: p(n + 1) = T(p(n), a(n), B(n)). The design

included. problem is to specifyI" in such a manner that as the updating
Environment is defined by a tripld «, 3, ¢}, where process evolves, the automaton learns more about the environ-
1) a = {1, 2, ..., r} is the set of actions (input to the en-ment, and improves its performance [i.e., redudeg.)]. For

vironment): example, a learning automaton that asymptotically behaves

2) B = {0, 1} is the set of responses (output of the envirorRetter than a pure chance automaton will in the limit have
’ average costim,, ... F[M(n)] < M,. Such an automaton is

ment); _ o0 . . )
3) ¢ = {c1, ¢a, ..., ¢, } is an unknown penalty probability call_ede>_<pen|ent8|mllarly, a learning au_tomgton is §a|d to be
set. optimal if lim,,—. E[M(n)] = c¢*. Optimality implies that
Automaton is defined by a quintuple asymptotic_ally the ac_ti.on with the lowest penalty probability is
(®, a, B, F(., ., .), G(.)}, where selected with probability one.

Optimality is desirable istationaryenvironments, but a sub-
1This form ofe-optimality of STAR”) is proven in exactly the same way for optlmal performance may be preferablmmStatlonarwnes'
the two-action and multiaction case, using relatively simple mathematical toofsh environment is called nonstationary if the penalty probabil-
such as the theory of finite Markov chains. On the contrary, the analysis of VS$#eg vary with time. This situation occurs frequently in applica-
requires more delicate arguments and use of the theory of stochastic difference . . ..
I0ns. Forinstance, in a control problem the characteristics of the

equations. Especially for the case bf:_.p, an approximation argument is e ) .
required [4, pp. 166—168]. plant may change in time, so that different costs are associated
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at different times with the same action. Similar situations occatate transition mechanism defined by the probabilifiesh

in telephone and computer network routing. The importance ef« 8 — @, as follows:

adaptation becomes even more obvious in such situations. The

automaton must not only learn the characteristics of the enijk, 1 = Pr[®(n + 1) = [|®(n) =i, a(n) = j, f(n) = k|
ronment, but also “forget” old characteristics and acquire new i,l=0,1,....,7r j=1,....,r k=0,1. (4
ones, in response to the time-varying situation. It is by now well

understood [4, pp. 227-279] that an optimal automaton may Blese probabilities depend on the current state, action, and re-
too rigid to accommodate such requirements. In particular, aponse. We will present several possible choices &r all of
optimal automaton may either get locked in an action whickhich the state procesg(rn) is an ergodic Markov chain with
is originally optimal but later becomes pessimal. On the othstate transition matri®, whereP;; = Pr[®(n+1) = [|®(n) =
hand, the automaton may be able to respond to changesintheig(y; [ = 0, 1, ..., r). Hencelim, ., 7(n) = 7, wherer is
vironment but not sufficiently quickly, because it is too heavily uniqueequilibrium probability vector. We now proceed to de-
committed to a previously optimal action. It has been found [fine F', distinguishing four cases.

pp. 227-279] that in such casespptimal automata are better

able to respond to a changing environment. Aoptimal au- A. Deterministic Reward—Deterministic Penalty

tomaton is one which satisfigin,, ... E[M(n)] < ¢* + ¢, In this case, both reward and penalty cause deterministic state
with € > 0. transitions, according to the following.
1) When in state 0 and chosen action (§ = 1, ..., r), if
. STARM rewarded go to statewith probability 1 (with probability one)

In this section, we present the STAR automaton with depth T =1 Foo =0
D = 1, which we denote by STAR. The general case of =~ %%¢~ > “0i0.J
STAR with arbitrary depth will be presented in the following i=1...,r J=0,1L....r j#i (5
section.

As mentioned earlier, the action setds = {1,...,r}
and the environment response setfis= {0, 1} (reward
and penalty). The automaton can be in anyrof 1 states,
{0, 1, ..., r}. The state transition and action selection mech- 2) When in statei, i
anisms are illustrated in Fig. 1(a). The star-shaped structLere = 1., ’
which gives STAR its name, is clearly illustrated in Fig. 1. bility 1 ' ’

When the automaton is in stateit performs action with
probability 1 (fori = 1, 2, ..., r). Therefore, each state is Fioi=1, Fyu ;=0
“committed” to a corresponding action, except for state 0 which ’ . ’ . .,
is a special, “neutral” state: when in state 0, the automaton i=lor g=01...r j#i (1)
chooses any of theactions equiprobably. The action selectiori)f unished, go to state 0 with probability 1
mechanism described above can be summarized by the action ’

if punished, stay in state 0 with probability 1
Foiro=1, Foir,; =0 4, 5=1,...,m (6)

# 0 and chosen action i3
if rewarded stay in staté with proba-

selection probabilityG: & — « as follows: Futo=1, Fu ;=0 i j=1,....,m (8)
Gij = Prla(n) = j|®(n) =i] =1 From F' we can compute the equilibrium state probabilities
i=1,...,r, j=i P = and action probabilitiep and prove the expediency of the
1 automaton. Here, we only present the results of our analysis;
Gij = Prla(n) = j|®(n) = 1] = ~ detailed derivations are given in the Appendix. The nonzero el-
i=0, j=1,...,7. (2) ements ofP turn outto be (fori =1, ..., r)
(Al probabilities not listed above are equal to zero.) To Py = 1 Z i, Po= 1—¢
evaluate the expediency and optimality of the automaton, we T r
need to know the action probabilitieg(n) (j = 1, ..., 7) Po=ci, Pi=1-¢ 9)
written in vector form asp(n) = [pi(n)---p.-(n)]. We
also define the probability of being at staieat time n: all the other elements d? are zero. From (9) it is obvious that
mi(n) = Prob[®(n) = 4] (¢ = 0,1,...,r); written in  P;; > 0fori = 0, 1, ..., r. Furthermore, it is easy to check

vector form asr(n) = [mg(n) m1(n)---m.(n)]. We have the that? > 0. Hence, the state proce$$n) is irreducible, ape-
following relationship between action probabilities and statéodic and, as a consequence, ergodic [4]. Fidnve can com-

probabilities: pute the state probabilities which turn out to be
p(n) = w(n) - G. 3 To = Tr ;W= — rl-a
> o YL
Hence, both the learning behavior and optimality properties de- i=1 j=1
pend on the state probabilitieén ), which in turn depend on the i=1,2,...,7. (10)
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Now, taking the limit of (3) a3z — oo, we obtain the limit
action probabilities ap = G and finally find

1

pj= 2 j=1,..., 7 (11)
It is easy to compute the limiting average cost. We have
r r 1 T 1 7'
My=Y cjpj=) ¢ = =
= A pt HExs oxd
i=1 =1 =1

Since in the limit the action probabilities of STAR are the
same as those of the variable structlife_p automaton, which
is known to be expedient, STAR with deterministic reward
and deterministic penalty is also expedient.

B. Deterministic Reward—Probabilistic Penalty

fori = 1, ..., r; all the other elements dP are zero. By the
same arguments mentioned previoudly, ) is ergodic. Hence,
7« andp are determined by?; in particularr turns out to be

T T 1—¢;
o = r i = T ’ A
> L
i=1 =1
1=1,2,...r (29)

where¢; = (1 —6) -¢; (fori =1, ..., 7). Hence, (19) has the
same form as (11), but in place @fwe now have:;. As in the
previous case, we find

1
J

Pi= T d=boeer (20)
Mi=—" (-6 - <M. 1)
1 1
L; € L; “i

Hence, for anys > 0, STAR") with deterministic reward and

In this case, reward causes deterministic state transitions, prfbabilistic penalty has superior performanceltg_p, as
penalty causes probabilistic state transitions, according to {he|l as to STARY) with deterministic reward and determin-

following rules, which make use of the numidemwith 0 < § <
1.

1) When in state 0 and chosen action (§ = 1, ..., r), if
rewarded go to statewith probability 1

Foio,s =1,  Foio,; =0
i=1,...r j=0,1,...,r j#i (13)

but if punished, go to statewith probability$ or stay in state O
with probability 1 — 6

Foi1,s =06, Foio=1-0, Foi1,;=0

ij=1,...,1r j#i. (14)

2) When in states, + # 0 and chosen action ig

(- = 1,...,r), if rewarded stay in staté with proba-
bility 1

Fiio,i =1, Fi,; =0
i=1,....r j=0,1,....,r j#i (15)

if punished, stay in statéwith probability 6, or go to state 0
with probability1 — ¢

Fi1..=06, Fi1io=1-6, Fi1 ;=0
i i=1, ..., A (16)

As in the previous subsection, from we computeP. The
nonzero elements d? are

I—Ci

(17)

r

1-96 - C;
POOZT'Z;Ch P0z'=5'?+

P,;OZ(l—(S)-Ci, Pi,=1—-c¢c,+6 ¢ (18)

istic penalty. From this, it follows immediately that it is also
expedient

C. Probabilistic Reward—Deterministic Penalty

In this case, reward causes probabilistic state transitions, but
penalty causes deterministic state transitions, according to the
following rules, which make use of the numbewith 0 <e < 1.

1) When in state 0 and chosen action @ = 1, ..., r), if
rewarded go to statewith probabilityl — ¢ or stay in state O
with probability e

F01‘,0,1‘, =1- €, F(),‘,(],(] = €, FO'iO,j = 07
hL,j=1,....10 j#£i (22)

but if punished, stay in state 0 with probability 1
Foiro=1, Foi,; =0 4, 5=1,...,m (23)

2) When in statei, ¢ # 0 and chosen action ig
(z = 1,...,r), if rewarded stay in staté with proba-
bility 1 — € or go to state 0 with probability

Fiio,i =1—¢€, Fioo=¢€  Fio ;=0

if punished, go to state 0 with probability 1

Fi10=1, Fy1,;=0, 1, J=1,...,m (25)

2From (21) it may appear that fér = 1 we haveM? = 0. This is not the
case; wherd = 1, it is no longer true thaP? > 0. In fact, we haveP;, = 0,
Vj,andP;; = 1forVi # 0; hence, states= 1, ..., r are absorbing states
and the state procedsn) is not ergodic. Intuitively, this follows from the fact
that whend = 1, no penalty is applied [consider (16)]. The upshot of all this is
that the automaton has no steady-state probabilitiead average cost/; is
not well defined. As a practical matter, the choicédef 1 must be avoided.
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As in the previous subsection, frof we computeP. The
nonzero elements a? are

T r

1 1
Py = - i c = 1- i
l—g¢
Poi=(1—¢) — (26)
T
P :ci—l-e-(l—ci), Pi'i:(1_€)'(1_ci) (27)
fori =1, ..., r; all the other elements d? are zero. FronP
we infer that®(n) is ergodic and compute andp
r r 1—-7¢;
o = r ’ Ty = T : —
1 1 G
S ]gl I
1=1,2,...,r (28)
withe; =c¢;+e-(1—¢)>c¢ (fori=1,...,7).
Similarly
1
pj = rcjl J=1...,r (29)

and the limiting average cost is
T

Mi = — . (30)
> a
=1
Since¢; > ¢, i = 1,...,r, we see thatVl; > M;, and

so STARY with probabilistic reward and deterministic penalt

performs worse than either thgz _» or STARY with deter-
ministic reward and deterministic penalty.

D. Probabilistic Reward—Probabilistic Penalty

y
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As in the previous subsection, fromwe computer andp;
The nonzero elements &f are

r

Poozl%é-Zcﬁ;-Z(l—ci)

=1 =1
i 1—g¢
Po=6- 24 (1-e) — (39)
T T
Pioz(l—é)'ci—f—é'(l—ci)
PZ‘Z'Z(S-Ci—F(].—G)-(l—Ci) (36)
fori = 1, ..., r; all the other elements df are zero. By the

same arguments as discussed previously, it is see®{hatis
ergodic; its equilibrium state probabilitiesturn out similar to
(11) but cannot be written conveniently in closed-form.

We observe that the previous three formstofare special
cases of this one: deterministic reward—deterministic penalty
usess = 0, e = 0, deterministic reward—probabilistic penalty
uses) < ¢ < 1, e = 0, probabilistic reward—deterministic
penalty use$ = 0,0 < € < 1.

IV. STAR(D)

In this section, we present the STAR automaton with ar-
bitrary depthD. The action set and the response sétare the
same as in the previous section. However, STARhas more
states than STAR) and a somewhat different labeling conven-
tionis used. States are numbered by pairs of integers, as follows.

1) The state (0, 0) is the neutral state (all actions are equiprob-
able).

2) The state(s, d) is the dth state committed to action
Hence, the index runs from 1 tor and the index! runs from 1
to D.

This numbering of the states corresponds to the star-shaped

structure of Fig. 1(b). States are partitioned imtgets of D

This is the most general case: both reward and penalty CaUsGes each, each set formingranchof the star, each branch

probabilistic state transitions as follows.
1) When in state 0 and actionigi = 1, ..., r), if rewarded

go to state with probability1l — e or stay in state 0 with prob-

ability ¢
Foio,s =1 —¢, Foio,j =0
=1, j£i

Foio,0 = ¢,
(31)
but if punished, go to statewith probability §, or stay in state
0 with probability1 — ¢

Foi1,i =6, Foii,o=1-06, Foir,; =0
i, j=1,...,7 j#1i. (32)

2) When in state, i # 0 and actionis (i = 1, ..., r), if
rewarded stay in statewith probability 1 — ¢ or go to state 0
with probability e

Fiio,i =1—¢, Fiip,; =0
hL,j=1,...,r j#i

Fiio,0 = ¢,
(33)
if punished, go to state 0 with probability— 6, or stay in state
1 with probability 6
Fi1,=0, Fiyi0=1-0,

ij=1,...,m

Fii1,;, =0

i#i. (34)

being committed to one of thepossible actions. Every time the
automaton chooses actiérand is rewarded, it goes to a state
deeper into théth branch; when it is punished it moves toward
the neutral state (0, 0), where every action is equiprobable. Thus,
the operation of each branch of the automaton state diagram
resembles that of a stack.

The action selection mechanism is the same as for $PAR
and is described byr: ® — « [ note that the state sét is
different from that of STARY]

Gi,a),; = Prla(n) = j|®(n) = (i, )] = 1

1=3=1,...,r, d=1,...,D (37)
G(0,0),5 = Prla(n) = j|@(n) = (0, 0)] = —
ji=1, r (38)

Action and state probabilities are defined in the same manner as
for STAR(Y; once againb is different from that of STAR)

in vector form,p(n) = [p1(n)-- - pr(n)]
76,0 (n) = Pr®(n) = (i, d)] (i, d)=(0, 0) ori=1, ..., 7,
d=1,...,D (40)
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invectorformyr(n) = [r(o,0)(n) m(1,1)(n) - - -7, Dy(n)]. The

following relationship holds between action probabilities anaction is, if rewarded stay in statg,

state probabilities:

Z W(i,d)(n) ) G(’L}d)J-

Y (i, d)

pj(n) = (41)
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4) Finally, when in staté¢i, D),i =1, 2, ..., r and chosen
D) with probability1 — e

or go to statdi, D — 1) with probability e
Fii, pyio,i,p) =1 — €, Fi Dyio, (i, D—1) = €

(50)

1=1,...,r

In the following paragraphs, the procesgn) will always be ¢ if punished, stay in staté, D) with probability§ or go to
ergodlc hence, it has a unique equilibrium probability vectgs[ate( D — 1) with probability 1 —

™= [7r(0 0) T(1,1) """ T(r, D)] Where7r( d) is defined by

T(i,d) = nli_{%oﬂ(i,d)(n), (i, d)=(0,0)ori=1,...,r
d=1,...,D. (42)

Fi, pyi1, ¢, p-1)=1-10
1=1,...,7r

Fi, pyi1, i, p) =9,
(51)

All elements ofF" not listed above, are taken to be equal to

The state transition mechanism is defined by the probabilitigsro.

F:®xaxf — &, where

Fii, ayjk, (i, ay = Pr[@(n 4+ 1) = (i, d')]

(I)(n) = (iv d)7 a(n) =7, /H(n) = k] (43)

Using the above values &f, G, andc probabilities, we obtain
a state transition probability matriR?), which determines the
convergence properties of STAR . Omitting the details of the
derivation, we give the final result

The most general’ used is characterized by probabilistic re- r

ward and probabilistic penalty with < 6 < 1 and0 < e < 1

(similar to the case of Section IlI-D). We show below only the

nonzero elements af.

1) When in state (0, 0) and chosen action, i§ rewarded go

to state(z, 1) with probability1 — e or stay in staté0, 0) with
probability e
Foo,0yi0,,1) =1 =€, Flo,0i0, (0,0) = €
i=1,...,r (44)

but, if punished, go to statg, 1) with probability 6 or stay in
state (0, 0) with probability — 6§

Flo,0yi1,(0,00=1—06
1=1,..., 7 (45)

Fo,0yi1, (i,1) =6,

2) Whenin stat¢i, 1)i =1, 2, ...,
1, if rewarded go to statg, 2) with probability 1 — ¢ or go to
state (0, 0) with probability

Fi, 1yi0, 0,0y = €
1=1,...,7

F(,,;, 10, (i,2) =1 — €,
(46)

but, if punished, go to stat@, 2) with probability 6 or go to
state (0, 0) with probability — 6

Fii,1yi1,0,00=1-0
1=1,..., 7

Fii, 1y, (i,2) =96,
(47)

3) Wheninstat€i, d)i=1,2,...,7r,d=2,...,D—1
and chosen action i5 if rewarded go to staté, d + 1) with
probability 1 — € or go to statdi, d — 1) with probabilitye

Fii, ayio, (i,d—1) = €
T (48)

Fii, ayio, (i,a+1) =1 — ¢,
i=1, ...

but, if punished, go to statg, d + 1) with probability§ or go
to state(i, d — 1) with probability1 — 6

Fii ayi1, ,a-1y =110
1=1,...,7r

Fo, ayit, i, av1) =0,
(49)

r, and chosen action is

1
P(((?())) 0,00 =7 S =ci)-etei-(1-0)

i=1
D 1
Porty. i1 :—<<1 ) (1 — )+ -0)
=1,.
D
(<i,1)),(12 =(1-¢)- (1—6)'1'01 0
P((/L',D1)), (0,0) :( —ci) et (1-0)
D
((L )) (i,d+1) :( 07) (1 - 6) +cio
D
P((i,(g),(i,d n=0—ci)-etei-(1-96)
i=1,. d=2 ..., D—1
P((zDg) oy =1L —ci)- (1 - 6) +ci-6
(D)
(i, D), (i, D—1)

:( —¢)-et+c-(1-0)
17

All the transition probabilities not indicated above are equal
to zero. A tedious but straightforward computation shows that
(P(P))2D > 0, Intuitively, this corresponds to the fact that in
2D steps,we can get from any state to any other state, with pos-
itive probability. Furthermore, we note thﬁ}((f())% ©0,0) > 0.
Hence,®(n) is irreducible and aperiodic, consequently also
ergodic. It follows that there are probability vectors”)(n),
(D) such thatr ™) (n + 1) = 7P)(n) P(P), 7(D) — z(D)p,
7P) = lim,,_ o, ©P)(n). Just like in the STAR) case, from
7(P) we obtain a limiting (equilibrium) action probability
vectorp®) = [p{P) ... ptP)).

In the general case, whén< 6 < 1,0 < e < 1, the equilib-
rium action probabilities cannot be expressed in a compact form.
However, we can find compact expressions for special cases.

1) Deterministic Reward—Deterministic Penaltin this

cased = 0, e = 0. We obtain (see the Appendix)

ST (52)
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With a little additional algebra it can be seen that the aboveHence,limD_,oo(p(D)/pgD)) = 0 (fori = 2,...,7).

K2

action probabilities are very similar to the ones of the Tsetligince for everyD we have}";_, pgD) = 1, it follows that

automatonlyy, » [4, p. 68]. - _ Hmp oo p{7) = 1, limp o p'~) = 0 fori # 1, and the proof
2) Deterministic Reward—Probabilistic Penaltyn this case of (optimality is complete.

0 <6 <1,e=0.We obtain (see the Appendix) ii) For everys > 0 and fori = 1, 2, ..., r define¢;(§) =
D \d (1 —6)-c; andé*(6) = minq<i<, 6(6) = (1 — 0) - ¢*. Fur-
> (lc_—c) thermore, definé, = 1 — (1/2¢*). Itis easy to check that for

= 4= T y=1,2,...,rn  (53) all§ > § we have:*(§) < 1/2, which implies [by the same
21»: D (—_CJ)d argument used for i)] the-optimality of the deterministic re-
i=1d=0 "\ 7 ward—probabilistic penalty STAR). Furthermore, note that in

everyenvironmentl /2 > 1 — (1/2¢*) = 9. Hence, inevery
environmen® > 1/2 guarantees-optimality. [ |
Hence, STARY is expedient, just likeLr_p, and the

This is similar to (52) and also to the Tsetlin automaton; »
[4, p. 68]. But there is an important difference: in placecpf

we havec; = (1 —0) - ¢; < ¢;. It must be emphasized that, o reward/probabilistic penaltTAR(?) can be

for any value ofc;, the¢; = (1 — §) - ¢; can be made smaller madee-optimal, just likeL Furthermore, as will be seen
than 1/2 by appropriate choice &fAs will be seen in Theorem . €-op ') R=ch: '

: L g in the next section, the STAR automata are generally faster than
1, it follows that the deterministic reward—probabilistic penalt ) .
(D) . : . e corresponding variable structure automata. They are also
STAR"Y) can be made-optimal in any environment by appro-_ . . L . . L2
fiate choice of easier to implement, requiring no floating point multiplications.
P - o . Finally, STAR automata are mathematically more tractable,
3) Probabilistic Reward—Deterministic Penaltyn this case . -
. . since they can be analyzed by the theory of finite Markov
6 =0,0 < e < 1. We obtain (see the Appendix) o . . .
chains; the analysis of.p_.p behavior requires the use of

Do/ -\ stochastic difference equations and an approximation argument
b Py ( ‘) [4, pp. 166-168].
pP—d=0r T 7 iy on (54)
v r D -z
> % (%)
j=1 d=0 V. EXPERIMENTS

In all of the above, whe = 1, we recover the STAR' |, tis section, we present some computer simulation results
case. Furthermore, ifthere is atleast one: 1/2, from (52) we 4 compare the performance of STAR to that of Lz_p
see that STARP) is e-optimal. In fact, we can show astronger;, . . “and Lp_;. The automata are compared for various

result: by appropriate c(p?(;ice 6f theprobabilistic reward—de- \51yes of the environment penalty probabilities in a switching
terministic penalty STAR’ can be renderecoptimal in every  gnyironment where the best action changes periodically. An

environmenthis is proved below. ~ experiment is determined by automaton and environment
Theorem 1: Take any environmeticy, ca, ..., ¢, }. Define parameters.
¢ = mini<i<y ¢ The automata parameters are: deptfor STAR?): learning
I) If ¢* < 1/2, then the deterministic reward—deterministi(,;ate a for Lp_p and Lr_r; and |earning rateg and b for
_ penalty STARP) is e-optimal. _ Lg_.p. Forevery experiment, we have tried ten different values
ify Forall 6 > 1/2, the deterministic reward—probabilisticof depthD: 1, 2, ..., 10 and ten different values of learning
penalty STARP) is c-optimal. ratea: 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 0.70, 0.80, 0.90, 0.99.
Proof: i) Assume, without loss of generality, that = Regarding thed.rz_.p automatonp must also be specified; we
¢1 < 1/2. Defineg; = (1 —¢;)/c¢; fori =1, ..., r and note have usedb = a/10 andb = a/5. We have used ten actions in
that g, is the maximum of{¢g:, ..., ¢,} and, in factgs > 1. all experiments.
Choose any = 2, ..., r and take the ratio Regarding the  environment parameters, there
D 4 are ten penalty probabilities;, ¢ = 1,2,...,10.
o > (1;“7) ) 4 D The smallest penalty probability isc; for t?mes
P~ _ d=0 _ltgi+---tg n = 1,2, ...,50,101, 102, ..., 150, ... and ¢, for times
P i (1_61)'1 L+gi+--+g7 n = 51,52, ...,100, 151, 152, ..., 200, .... Hence, in
di=o \ every period of 50 time steps, the learning automaton has to
_ D41 _ readjust to the best action. We have chosen nine different sets
a-1 g 1 e ) ) .
= g1 7 (55)  of ¢;s resulting in nine different experiments. Oyrchoices
! 91 are summarized in Table I.
The first fraction is independent @ and does not affect con- The duration of the experiment is 5000 time steps, which
vergence. There are two cases for the second fraction. means there are 100 switchings of the penalty probabilities. The
a) If g; < 1, then the numerator tends tdl and the denomi- run length of 5000 steps was sufficient to reach steady-state be-
nator tooo, hence the fraction goes to zero. havior. Here “steady-state” refers to the time averaged cost in-

b) If g; > 1, then the whole fraction tends t9; /¢1)”. How- curred by each automaton, which after the first couple thousand
ever, we have assumed that < g1, hence(g;/g1)” goes to steps reaches equilibrium and fluctuates around a mean value.
zero again. In fact, convergence of average cost occurs within at most 2000



730 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

TABLE |
CUMULATIVE RESULTS OF THENINE EXPERIMENTS THE COST AVERAGED OVER TEN RUNS, EACH OF 5000 SEPS IS SHOWN FOR
THE BESTSTAR(®), Lr_p, Lr_;, AND Lr_.p AS WELL AS FOR THE STAR(®

Exp.Nr. 1 2 3 4 5 6 7 8 9

c 0.04 0.04 0.04 0.04 0.04 0.04 0.44 0.44 0.84

cy 0.10 0.10 0.10 0.50 0.90 0.90 0.90 0.90 0.90

cj 0.10 0.50 0.90 0.90 0.50 0.90 0.50 0.90 0.90

STAR® | 0.0905 | 0.0999 | 0.0928 | 0.2739 | 0.2835 | 0.2665 | 0.5101 | 0.7819 | 0.8933

STAR(®) | 0.0880 | 0.0713 | 0.0705 | 0.2739 | 0.2835 | 0.2665 | 0.5016 | 0.7359 | 0.8917

D 1 7 7 2 2 2 8 6 5

Lr_p | 0.0896 | 0.2135 | 0.2455 | 0.3534 | 0.2961 | 0.3730 | 0.5145 | 0.8162 | 0.8922

a 0.800 0.900 0.990 0.990 0.990 0.990 0.900 0.990 0.990

Lr_ep | 0.0887 | 0.0826 | 0.0785 | 0.2989 | 0.4169 | 0.4029 | 0.5048 | 0.7120 | 0.8906

a 0.100 0.200 0.500 0.200 0.800 0.900 0.050 0.990 0.100

b=a/10 0.010 0.020 0.050 0.020 0.080 0.090 0.005 0.099 0.010

Lr_cp | 0.0895 | 0.0950 | 0.0901 | 0.3216 | 0.3651 | 0.3299 | 0.5313 | 0.7161 | 0.8912

a 0.010 0.100 0.500 0.900 0.900 0.990 0.020 0.800 0.100

b=a/b 0.002 0.020 0.100 0.180 0.180 0.198 0.004 0.160 0.020

Lp_y | 0.0882 | 0.0721 | 0.0730 | 0.2800 | 0.4840 | 0.4712 | 0.5023 | 0.7082 | 0.8881

a 0.050 0.100 0.500 0.200 0.200 0.200 0.050 0.100 0.100

My, | 0.0870 | 0.1961 | 0.2278 | 0.2786 | 0.2375 | 0.2857 | 0.5159 | (.8148 | 0.8936

M,pe | 0.0400 | 0.0400 | 0.0400 | 0.0400 | 0.0400 | 0.0400 | 0.4400 | 0.4400 | 0.8400

steps; an example of this can be seen in Fig. 2. The action prabparticular, for Experiment 9, where all the actions are associ-
abilities, on the other hand, periodically change values to follosted with very high penalty probabilities (hence, the choice of
the environment evolution. We have also run longer simulatioastion is practically immaterialll automata incur practically
(e.g., 10000 steps, not reported here), but no appreciable chaifigesame average cost, between 0.888 and 0.897 (note the re-
of the average cost was observed. Each 5000-steps run isdeced scaling of thg-axis in Fig. 7).

peated ten times and the average costs incurred by the ®TAR  In an unknown environment, the optimal valuel®fa, andb
Lg_p, Lg_1, and Lg_.p automata are computed and comwill not be known in advance. However, in Table |, we see that
pared to each other, to the optimal cdgt,; and to the theo- the valueD = 2 yields uniformly good results for all environ-
retical costM;y, whereM, . = ¢* and My, are given by (12). ments tested: the cost of STARis either very close or, in many

In Figs. 3-5, we compare the average cost forllle, andb cases, quite lower than that 8f;;,, and very close td/,;. In

values, for three representative experiments. short, STAR? gives uniformly good performance in a variety
The cumulative results can be seen in Table I. Namely, voé unknown environments.
compare the cost of the best STAR to that of the besEz_p, Regarding the issue of convergence, consider Fig. 8(a)—(c)

Lr_.p,andLg_j, as well as to theoretical cost;;, and op- (referring to Experiment 4) and Fig. 9(a)—(c) (referring to Ex-
timal costM,. Finally, we also list the cost of STAR. The periment 6). In each of these cases, we present the evolution of
minimum cost attained is denoted in bold. We note that in E&ction probabilityp; for 250 steps, encompassing five penalty
periments 1-9, the best STAR outperforms the bestz_p; probability switchings.

in Experiments 1-7, it also outperforms the bégt_.» and  In Fig. 8(a), we compare action probabilities of STAR®?)
Lg_1, while in Experiments 8 and 9, STAR), Li_.p, and andLp_p witha = 0.99. The optimalp; behavior would be the
Lg_; performance is very close, as can be seen in Fig. 6 (reféslowing: in the time intervals 1-50, 101-150, and 201-250,
ring to Experiment 8) and in Fig. 7 (referring to Experiment 9}, should be equal to one, since action 1 has the lowest penalty
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LR-I

LR-EP, Case 2

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Fig. 2. Average cost (for times 1 %) plotted versus time. This refers to one of the ten runs of Experiment 6. Average costs incurred by (STAR; _ p,
Lr_1,and the two examples df s _.p are shown. It can be seen thatdy 2000, average cost has converged to a steady-state value for all automata.

0.4

0.35

o
w
f
]

o
N
(6]
£

—~0 —-—STARD

\ / -o-LR-P
—+—LR-eP 1
—o—LR-eP 2

/ ——LR-I|

Average Cost
o

= o

(6] N
]
\

r

0.05

Learning Parameter

Fig. 3. Experiment 3. Average STAR) cost as a function ob; averagel _ p andL z_; cost as a function of; averagel. z_. » cost as a function of, b.

probability; in the time intervals 51-100 and 151-200should STARp, is the same as in Fig. 7, the same conclusions hold. For
be zero, since now action 2 has the lowest penalty probabilifyz _.p, in this case we have = 0.20 andb = 0.02. The small

For STAR, we see that after a few stgpsbecomes one and learning rates result in slower response, with the automaton lag-
stays there until penalty probability switching; shortly afterging behind environment switchings. In Fig. 8(c), we compare
wards it becomes zero. The same pattern occurs at every penadtyon probabilitie; of STAR? and Lz_.p with a = 0.90
probability switching, STAR successfully following the envi-andb = 0.18. Again, Lg_.p is slower and less successful than
ronment.Lg_p with a = 0.99 has unstable response and is leSSTAR in responding to environment switchings. The high
successful in following the environment. It is worth noting that values again result in thég_.p displaying near-FSSA be-
the high learning rate (which, we repeat, gave the best resultavior. Similar conclusions can be drawn from Fig. 9(a)—(c),
for Lr_p) essentially results in behavior resembling that of awhich pertain to Experiment 6. Moreover, STAR responds to
FSS automaton. In Fig. 8(b), we compare action probabilities environment switchings almost instantaneously. Figs. 8 and 9
of STAR® andLx_.p with a = 0.20 andb = 0.02. Since the support the conclusion that STAR responds faster thanp,
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Fig. 5. Experiment 6. Average STAR) cost as a function ab; averagel. x_ » andL ;_; cost as a function of; averageL . » cost as a function of, b.

Lgr_1, andLg_.p to environment switchings. As we have al-also performed a number of computer experiments, comparing
ready seen, in general, it also incurs smaller average cost. the performance ofLz_p, Lr_;, Lr_.p, and STARP)
in nonstationary environments. The conclusion is that in
every case, STAR outperformsg_p; in most cases, it also
outperformsLr_.p and Lr_;, except when all actions have

In this paper, we compared the performance of traditionggry high penalty probabilities, in which case all automata
VSS automata to that of a new class of FSS automata, e approximately the same performance. In addition, there
so-called STARD). Theoretical analysis leads to the followings & depth valueD = 2, which uniformly yields near-optimal
conclusions for a stationary environment. First, STARvith ~ results. When the environment parameters are unknown, it is
deterministic reward and penalty has the same equilibriuageful to know that fo) = 2 a uniformly good performance
action probabilities and expected costag_ . Second, the can be achieved. Summarizing, the STAR automata have the
introduction of probabi”stic pena|ty makes STAR per- following advantages over traditional VSS automata:
form better thanl.r_p. Finally, when depthD is increased, 1) they generally give better performance;
STAR®) with deterministic reward and probabilistic penalty 2) they converge faster;
can be rendered-optimal in every environment. We have 3) they are simpler to implement.

VI. CONCLUSIONS
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In the future, we intend to compare STAR to discretized For instance, let us compufg,, in other words, the proba-
VSSA and examine the possibility of implementing estimatiohbility of transition from state O to state 0. We have

and pursuit algorithms by FSSA. We hope our conclusions

will stimulate renewed research on FSSA to obtain furthBs = Pr(®(n + 1) = 0|®(n) = 0)

high-performance, simple-implementation learning algorithms.

APPENDIX
MATHEMATICAL APPENDIX

A. STARD State Transition Matrix

First, we derive equations for the state transition matrbor
STARM, This matrix depends on the parameteaside, which

lie in the interval [0, 1]. We will first derive (35) and (36) for
generale and é; then we will takeé and/ore equal to zero to

derive (9), (17), (18), (26), and (27) as special cases.

= iPrm(n) — i[®(n) = 0) - Pr(B(n) = Lla(n) = )
f:rfr(cp(n +1) = 0|8(n) = 1, ®(n) = 0)
+ iPr(aw — i (n) = 0) - Pr(B(n) = Ola(n) = )
Pr(B(-+ 1) = 0[8(n) = 0, B(m) = )

=Y =Y T (e) e (56)
1=1 1=1
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Fig. 8. (a) Experiment 4. 250 time steps profiles of STAR(D = 2) p, probability (solid line) andL z_p (a 0.99) p, probability (dotted line). (b)
Experiment 4. 250 time steps profiles of STER (D = 2) p, probability (solid line) andLr_.r (@ = 0.20, b = 0.02) p, probability (dotted line). (c)
Experiment 4. 250 time steps profiles of STER (D = 2) p, probability (solid line) andL zx_ . (¢ = 0.90, b = 0.18) p; probability (dotted line).

Similarly, fori = 1, ..., r + Pr(a(n) = i|®(n) = 0) - Pr(B(n) = Ola(n) = i)
Poi =Prob(®(n + 1) = i|®(n) = 0) iPr(‘P(n +11) =i|B(n) = 0, ®(n) = 0)
= Pr(a(n) = i|®(n) = 0) - Pr(8(n) = 1|a(n) = i) =—ci b+ (I-ci)-(1—e). (57)

-Pr(®(n+1) =4B(n) =1, ®(n) =0) Equations (56) and (57) are equivalent to (35). We also have for
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(a) Experiment 6. 250 time steps profiles of STAR(D = 2) p, probability (solid line) andL x_p (¢ = 0.99) p, probability (dotted line). (b)

Experiment 6. 250 time steps profiles of STER (D = 2) p, probability (solid line) andLz_.» (¢ = 0.90, b = 0.09) p, probability (dotted line). (c)
Experiment 6. 250 time steps profiles of STAR (D = 2) p; probability (solid line) andL . (¢ = 0.990, b = 0.198) p; probability (dotted line).

-Pr(®(n+1) =0[|8(n) =1, &(n) =1)

+ Pr(a(n) = ilB(n) = i) - Pr(B(n) = Ola(n) = i)

-Pr(®(n+1) =0|8(n) =0, ®(n) =1)
=1-¢,-(1=6)+1-(1—¢)- €

1=1,...,7

Py =Pr(®(n+1) =0|®(n) =1)
= Pr(a(n) = i|®(n) = i) - Pr(B(n)

Le(n) = 1) (58)
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and peated. We now compute the equilibrium probabilitié8). In
Pj; = Pr(®(n+1) = i|®(n) = i) what follows,. we drop the superscriptfor the sake of brevity.
= Pr(a(n) = i|®(n) = i) - Pr(B(n) = 1|a(n) = i) We start withd = 0, e = 0. ®(n), the state process, is irre-
ducible and aperiodic, hence ergodic, and it possesses a limiting
Pr(®(n +1) =1|B(n) =1, ®(n) = i) equilibrium (stationary) probability-. For theith branch of the
+ Pr(a(n) = i|®(n) = 1) - Pr(B(n) = 0|a(n) = i) star ¢ = 1, ..., r) we obtain terminal conditions
Pr(®(n+1) =i|B(n) =0, ®(n) = 1) 1—c
=1-¢;i-64+1-(1—c)-(1—e). (59) 7(0,0) ° T TG,2) G =T,

_ _ 7, 1) (L —¢i) + 7 py (1 —ci) =mu py (60)
Equations (58) and (59) are equivalent to (36). Now, letting

0, € arbitrary, from (58) and (59) we obtain (26) and (27); lettingnd intermediate conditions
e = 0, 4 arbitrary, from (58) and (59) we obtain (17) and (18);
letting 6 = 0, ¢ = 0, from (58) and (59) we obtain (9) and weT(, 1) (1—ci) +mu3) ¢ =ma2), -,

are done. T(i,D-2) * (1-¢)+ T(i,D) " Ci = (i, D—1)- (61)
B. STARY Equilibrium Probabilities Combining (60) and (61), we get

Next, we obtain closed-form expressions for the equilibrium 1 1—¢ 1—c;
state and action probabilities of STARfor the case where ei- T(.1) = ="~ — " 7(i,0) and ;) = “T(i, d=1)
theré or ¢ or both are zero. d=2,...,D. (62)

We first consider the case = 0 ande = 0. As discussed
in Section I, ®(n), the state process, is irreducible and apérom this it follows thatr; 4y = ((1 — ¢;)/c;)? - (7(i,0)/7)

riodic, hence ergodic, and it possesses a limiting equilibriu@ = 1, ..., D). Sincer (g, o)+7(, 1)+ - -+7(, py = 1, We get
(stationary) probability, called. To obtaint, we start with the (0,0 " (1 +(1/7) Zf:l((l —c)/en)t 4+ (1)7) 25:1((1 _
equilibrium equationr = « - P. This matrix equation actually . )/ )?) = Lwhichimplies (fori =1, ..., r,d=1, ..., D)
consists ofr + 1 scalar equations. Writing the lastof these .
explicitly, we getfori =1, ..., r r 1—¢
ety e S —
. 1l-g U T (;ﬁ)’ :
™ =mo - — + ;- (1—c):>7ri—7r0-;- P ]Z:ldgo c;
This, togeth ith the fact that": 1 yield and
is, together wi e fac _, m; = 1yields r
g j=0 "J y 7!'(070) = D (64)
1—c
1) 1 2 Z(cf>
o * r+ Z J —e=1= 7j=1d=0
Cj T
] To obtain the equilibrium probability for actiain add (64) and
o I N s . ©63)ford=1,..., D
T = T = — 1=1,...,7
¢
r: 53 P (e’
i B - A + zD: . = (65)
which are exactly (10). To obtain (11), we observe that action i = 7(0,0) " 7] T@d) = 7 D o
i can only be taken when in state 0 or in statédence, for =1 Z > (77)
i=1,...,r, we have j=td=0
el 1 (fori =1, ..., r). Thisyields (52). For the casés< 6§ < 1,
pi = r 1 + I 1-q - to - e=0,6=0,and0 < € < 1, we use appropriate substitutions
N T N T Sy just like for the case STAR)] and obtain (53) and (54).
2 Z >
j=1 Cj j=1 Cj - Cj
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