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The STAR Automaton: Expediency
and Optimality Properties

Anastasios A. Economides and Athanasios Kehagias

Abstract—We present the STack ARchitecture(STAR) au-
tomaton. It is a fixed structure, multiaction, reward-penalty
learning automaton, characterized by a star-shaped state transi-
tion diagram. Each branch of the star contains states associated
with a particular action. The branches are connected to a central
“neutral” state. The most general version of STAR involves prob-
abilistic state transitions in response to reward and/or penalty, but
deterministic transitions can also be used. The learning behavior
of STAR results from the stack-like operation of the branches;
the learning parameter is . By mathematical analysis, it is
shown that STAR with deterministic reward/probabilistic penalty
and a sufficiently large can be rendered -optimal in every
stationary environment. By numerical simulation it is shown
that in nonstationary, switching environments, STAR usually
outperforms classical variable structure automata such as ,

, and .

Index Terms—Adaptive systems, -optimality, learning au-
tomata, nonstationary environment.

I. INTRODUCTION

E ARLY work on learning developed in the context of math-
ematical psychology [1]–[3]. Learning is the ability to im-

prove performance using past experience, and is necessary for
adaptive decision making in a random environment with charac-
teristics which are unknown, difficult to describe, or difficult to
quantify. The theory oflearning automata[4] provides a frame-
work for the design of automata (i.e., simple entities) which in-
teract with a random environment and learn dynamically the ac-
tion that will produce the most desirable environment response.

At times , an automaton selects one of several
available actions, according to action probabilities determined
by the current state. The environment provides a random re-
sponse to the action selected; the response can be favorable (re-
ward) or unfavorable (penalty). Depending on the environment
response, the automaton changes state. When the action prob-
abilities of each state remain time-invariant, we have afixed-
structure stochastic automaton (FSSA). When the action proba-
bilities change in time, we have avariable-structure stochastic
automaton (VSSA).

The theory of learning automata was inaugurated with the
study of FSSA [5]. Later, interest shifted to the study of VSSA
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[6] which appeared to be more adaptable. Classic examples of
VSSA are , , and . An excellent overview
of the theory and applications of “classical” VSSA appears in
[4]. For some more recent applications, the reader is referred to
[7]–[13]. New VSSA algorithms have also appeared in the lit-
erature, e.g., the so-calledestimatoralgorithms [14], [15] and
pursuitalgorithms [14], [16]. An interesting development in the
field of VSSA is the introduction ofdiscretizedVSSA. This idea
has been introduced by Oommen [17]. In [18] and [19], action
probabilities are updated by the usual VSSA rules; however,
only a large butfinitenumber of discretized probability values is
used. As pointed out in [18] and [19], it is difficult to show-op-
timality for the multiaction discrete VSSAs. For a comparison
between continuous and discretized VSSA, see [20] and [21].

It can be seen from the above references that current learning
automata research is concentrated mainly on VSSAs. On the
other hand, FSSs are easier to implement and require less
computation per time step. This motivated us to return to the
FSSA idea and search for FSSA designs which perform as
well or better than corresponding VSSAs (e.g., are expedient,
-optimal, converge quickly, etc.) Good performance combined

with simplicity of implementation would make such FSSAs
attractive competitors to the currently used VSSAs.

In this paper, we introduce the STar ARchitecture (STAR)
automaton, an FSSA with the above-mentioned properties,
and compare its behavior to that of several “classical” VSSAs,
namely, and . (The comparison to
discretized VSSA will be performed in a future paper.) As
mentioned, we are particularly interested in the behavior of
STAR in nonstationary enviroments (the importance of which
is further discussed in Section II). We present computer simula-
tions which indicate that STAR can outperform VSSAs such
as and . We believe that the improved
performance of STAR is due to the use of a few discrete values
of action probabilities. This minimizes the requirements on the
random number generator and speeds up convergence.

The name “STAR automaton” refers to the star-shaped
structure of the transition diagram, displayed in Fig. 1(a).
Each branch of the star consists of several states, which are
“committed” to one of the actions available to the automaton;
in addition, each branch behaves like a stack. Thedepth of
the branches is a parameter of the automaton, hence we speak
of STAR , STAR , and, in general, STAR . The depth
determines speed of response and optimality. For example,
we prove that in case , STAR has the same limiting
behavior as the . In general, the parameter can be
fine-tuned to provide the best tradeoff between optimality and
speed of response to switching environments.
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(a)

(b)

Fig. 1. (a) Structure of STAR . (b) Structure of STAR .

An essential feature of STAR is that the reward and/or penalty
mechanisms can be probabilistic (depending on parameters
and , respectively). It must be noted thatthe deterministic re-
ward/probabilistic penalty STAR can become -optimal in
any environment by appropriate choice ofand .1 Further-
more, numerical experiments indicate that the value
gives consistently good results in a wide variety of environ-
ments.

The rest of the paper is organized as follows. In Section II,
we review the fundamental concepts of stochastic learning au-
tomata. In Section III, we present STAR with depth and
prove its optimality properties. In Section IV, we present STAR
with depth and prove its optimality properties. In Sec-
tion V, we present computer simulations to compare the perfor-
mance of STAR to that of and . Finally, in Sec-
tion VI, we summarize, present our conclusions, and propose
some directions for future research.

II. FUNDAMENTALS

In this section, we present the standard mathematical defini-
tion of the learning automaton model. This involves the defini-
tion of the automaton itself, the environment with which it inter-
acts, the objective of this interaction and the learning method. A
discussion of stationary and nonstationary environments is also
included.

Environment is defined by a triple , where

1) is the set of actions (input to the en-
vironment);

2) is the set of responses (output of the environ-
ment);

3) is an unknown penalty probability
set.

Automaton is defined by a quintuple
, where

1This form of�-optimality of STAR is proven in exactly the same way for
the two-action and multiaction case, using relatively simple mathematical tools,
such as the theory of finite Markov chains. On the contrary, the analysis of VSSA
requires more delicate arguments and use of the theory of stochastic difference
equations. Especially for the case ofL , an approximation argument is
required [4, pp. 166–168].

1) is the set of the internal states;
2) is the set of actions (output of the

automaton);
3) is the set of responses (input to the au-

tomaton);
4) is the state transition mechanism

according to which the next state is chosen (depending on
the current state and the environment response);

5) is the action selection mechanism ac-
cording to which the next action is chosen (depending on
the current state).

At each instant , the automaton selects randomly [according
to the action probability vector ] an action from
the finite action set . The probability that the automaton selects
action , at time is the action probability

; we have . The environment responds
with ; when the response is favorable (reward) ,
when it is unfavorable (penalty) . The environment re-
sponse to action is chosen according to the unknown penalty
probability . Thus, the en-
vironment is characterized by the set of penalty probabilities

. The environment reward probability is
, . The environment penalty probabilities

are unknown to the automaton.
It is desirable that the automaton selects the action associ-

ated with the minimum penalty probability . Au-
tomaton performance is usually evaluated by the average cost
for a given action probability vector:

. Thus, the action producing the is the
best action. With noa priori information, the automaton selects
actions with equal probability , . This
is called apure-chance automaton.Then the average cost is the
mean of the penalty probabilities .

Learning can take place by repeated application of the fol-
lowing procedure: the automaton chooses an action according
to the current action probability vector and updates this action
probability vector according to the environment response.
Hopefully, this procedure leads to selection of the best action
or, at least, reduction of the cost . Formally, the action
probability vector at time , , is updated by a learning
algorithm : . The design
problem is to specify in such a manner that as the updating
process evolves, the automaton learns more about the environ-
ment, and improves its performance [i.e., reduces ]. For
example, a learning automaton that asymptotically behaves
better than a pure chance automaton will in the limit have
average cost . Such an automaton is
calledexpedient. Similarly, a learning automaton is said to be
optimal if . Optimality implies that
asymptotically the action with the lowest penalty probability is
selected with probability one.

Optimality is desirable instationaryenvironments, but a sub-
optimal performance may be preferable innonstationaryones.
An environment is called nonstationary if the penalty probabil-
ities vary with time. This situation occurs frequently in applica-
tions. For instance, in a control problem the characteristics of the
plant may change in time, so that different costs are associated
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at different times with the same action. Similar situations occur
in telephone and computer network routing. The importance of
adaptation becomes even more obvious in such situations. The
automaton must not only learn the characteristics of the envi-
ronment, but also “forget” old characteristics and acquire new
ones, in response to the time-varying situation. It is by now well
understood [4, pp. 227–279] that an optimal automaton may be
too rigid to accommodate such requirements. In particular, an
optimal automaton may either get locked in an action which
is originally optimal but later becomes pessimal. On the other
hand, the automaton may be able to respond to changes in the en-
vironment but not sufficiently quickly, because it is too heavily
committed to a previously optimal action. It has been found [4,
pp. 227–279] that in such cases,-optimalautomata are better
able to respond to a changing environment. An-optimal au-
tomaton is one which satisfies ,
with .

III. STAR

In this section, we present the STAR automaton with depth
, which we denote by STAR . The general case of

STAR with arbitrary depth will be presented in the following
section.

As mentioned earlier, the action set is
and the environment response set is (reward
and penalty). The automaton can be in any of states,

. The state transition and action selection mech-
anisms are illustrated in Fig. 1(a). The star-shaped structure
which gives STAR its name, is clearly illustrated in Fig. 1.

When the automaton is in state, it performs action with
probability 1 (for , ). Therefore, each state is
“committed” to a corresponding action, except for state 0 which
is a special, “neutral” state: when in state 0, the automaton
chooses any of theactions equiprobably. The action selection
mechanism described above can be summarized by the action
selection probability as follows:

(1)

(2)

(All probabilities not listed above are equal to zero.) To
evaluate the expediency and optimality of the automaton, we
need to know the action probabilities ( )
written in vector form as . We
also define the probability of being at stateat time :

( ); written in
vector form as . We have the
following relationship between action probabilities and state
probabilities:

(3)

Hence, both the learning behavior and optimality properties de-
pend on the state probabilities , which in turn depend on the

state transition mechanism defined by the probabilities
, as follows:

(4)

These probabilities depend on the current state, action, and re-
sponse. We will present several possible choices offor all of
which the state process is an ergodic Markov chain with
state transition matrix , where

( ). Hence, , where is
auniqueequilibrium probability vector. We now proceed to de-
fine , distinguishing four cases.

A. Deterministic Reward–Deterministic Penalty

In this case, both reward and penalty cause deterministic state
transitions, according to the following.

1) When in state 0 and chosen action is( ), if
rewarded go to statewith probability 1 (with probability one)

(5)

if punished, stay in state 0 with probability 1

(6)

2) When in state , and chosen action is
( ), if rewarded stay in state with proba-
bility 1

(7)

if punished, go to state 0 with probability 1

(8)

From we can compute the equilibrium state probabilities
and action probabilities and prove the expediency of the

automaton. Here, we only present the results of our analysis;
detailed derivations are given in the Appendix. The nonzero el-
ements of turn out to be (for )

(9)

all the other elements of are zero. From (9) it is obvious that
for . Furthermore, it is easy to check

that . Hence, the state process is irreducible, ape-
riodic and, as a consequence, ergodic [4]. Fromwe can com-
pute the state probabilities, which turn out to be

(10)
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Now, taking the limit of (3) as , we obtain the limit
action probabilities as and finally find

(11)

It is easy to compute the limiting average cost. We have

(12)

Since in the limit the action probabilities of STAR are the
same as those of the variable structure automaton, which
is known to be expedient, STAR with deterministic reward
and deterministic penalty is also expedient.

B. Deterministic Reward–Probabilistic Penalty

In this case, reward causes deterministic state transitions, but
penalty causes probabilistic state transitions, according to the
following rules, which make use of the number, with
.
1) When in state 0 and chosen action is( ), if

rewarded go to statewith probability 1

(13)

but if punished, go to statewith probability or stay in state 0
with probability

(14)

2) When in state , and chosen action is
( ), if rewarded stay in state with proba-
bility 1

(15)

if punished, stay in statewith probability , or go to state 0
with probability

(16)

As in the previous subsection, from we compute . The
nonzero elements of are

(17)

(18)

for ; all the other elements of are zero. By the
same arguments mentioned previously, is ergodic. Hence,

and are determined by ; in particular turns out to be

(19)

where (for ). Hence, (19) has the
same form as (11), but in place ofwe now have . As in the
previous case, we find

(20)

(21)

Hence, for any , STAR with deterministic reward and
probabilistic penalty has superior performance to , as
well as to STAR with deterministic reward and determin-
istic penalty. From this, it follows immediately that it is also
expedient.2

C. Probabilistic Reward–Deterministic Penalty

In this case, reward causes probabilistic state transitions, but
penalty causes deterministic state transitions, according to the
following rules, which make use of the number, with .

1) When in state 0 and chosen action is( ), if
rewarded go to statewith probability or stay in state 0
with probability

(22)

but if punished, stay in state 0 with probability 1

(23)

2) When in state , and chosen action is
( ), if rewarded stay in state with proba-
bility or go to state 0 with probability

(24)

if punished, go to state 0 with probability 1

(25)

2From (21) it may appear that for� = 1 we haveM = 0. This is not the
case; when� = 1, it is no longer true thatP > 0. In fact, we haveP = 0,
8 j; andP = 1 for 8 i 6= 0; hence, statesi = 1; . . . ; r are absorbing states
and the state process�(n) is not ergodic. Intuitively, this follows from the fact
that when� = 1, no penalty is applied [consider (16)]. The upshot of all this is
that the automaton has no steady-state probabilities� and average costM is
not well defined. As a practical matter, the choice of� = 1 must be avoided.
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As in the previous subsection, from we compute . The
nonzero elements of are

(26)

(27)

for ; all the other elements of are zero. From
we infer that is ergodic and compute and

(28)

with (for ).
Similarly

(29)

and the limiting average cost is

(30)

Since , , we see that , and
so STAR with probabilistic reward and deterministic penalty
performs worse than either the or STAR with deter-
ministic reward and deterministic penalty.

D. Probabilistic Reward–Probabilistic Penalty

This is the most general case: both reward and penalty cause
probabilistic state transitions as follows.

1) When in state 0 and action is( ), if rewarded
go to state with probability or stay in state 0 with prob-
ability

(31)

but if punished, go to statewith probability , or stay in state
0 with probability

(32)

2) When in state, and action is ( ), if
rewarded stay in statewith probability or go to state 0
with probability

(33)

if punished, go to state 0 with probability , or stay in state
with probability

(34)

As in the previous subsection, fromwe compute and ;
The nonzero elements of are

(35)

(36)

for ; all the other elements of are zero. By the
same arguments as discussed previously, it is seen thatis
ergodic; its equilibrium state probabilitiesturn out similar to
(11) but cannot be written conveniently in closed-form.

We observe that the previous three forms ofare special
cases of this one: deterministic reward–deterministic penalty
uses , , deterministic reward–probabilistic penalty
uses , , probabilistic reward–deterministic
penalty uses , .

IV. STAR

In this section, we present the STAR automaton with ar-
bitrary depth . The action set and the response setare the
same as in the previous section. However, STARhas more
states than STAR and a somewhat different labeling conven-
tion is used. States are numbered by pairs of integers, as follows.

1) The state (0, 0) is the neutral state (all actions are equiprob-
able).

2) The state is the th state committed to action.
Hence, the index runs from 1 to and the index runs from 1
to .

This numbering of the states corresponds to the star-shaped
structure of Fig. 1(b). States are partitioned intosets of
states each, each set forming abranchof the star, each branch
being committed to one of thepossible actions. Every time the
automaton chooses actionand is rewarded, it goes to a state
deeper into theth branch; when it is punished it moves toward
the neutral state (0, 0), where every action is equiprobable. Thus,
the operation of each branch of the automaton state diagram
resembles that of a stack.

The action selection mechanism is the same as for STAR
and is described by [ note that the state set is
different from that of STAR ]

(37)

(38)

Action and state probabilities are defined in the same manner as
for STAR ; once again is different from that of STAR

(39)

in vector form,

or

(40)
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in vector form, . The
following relationship holds between action probabilities and
state probabilities:

(41)

In the following paragraphs, the process will always be
ergodic; hence, it has a unique equilibrium probability vector

, where is defined by

or

(42)

The state transition mechanism is defined by the probabilities
, where

(43)

The most general used is characterized by probabilistic re-
ward and probabilistic penalty with and
(similar to the case of Section III-D). We show below only the
nonzero elements of .

1) When in state (0, 0) and chosen action is, if rewarded go
to state with probability or stay in state with
probability

(44)

but, if punished, go to state with probability or stay in
state (0, 0) with probability

(45)

2) When in state , and chosen action is
, if rewarded go to state with probability or go to

state (0, 0) with probability

(46)

but, if punished, go to state with probability or go to
state (0, 0) with probability

(47)

3) When in state ,
and chosen action is, if rewarded go to state with
probability or go to state with probability

(48)

but, if punished, go to state with probability or go
to state with probability

(49)

4) Finally, when in state , and chosen
action is , if rewarded stay in state with probability
or go to state with probability

(50)

but, if punished, stay in state with probability or go to
state with probability

(51)

All elements of not listed above, are taken to be equal to
zero.

Using the above values of, , and probabilities, we obtain
a state transition probability matrix , which determines the
convergence properties of STAR. Omitting the details of the
derivation, we give the final result

All the transition probabilities not indicated above are equal
to zero. A tedious but straightforward computation shows that

. Intuitively, this corresponds to the fact that in
steps,we can get from any state to any other state, with pos-

itive probability. Furthermore, we note that .
Hence, is irreducible and aperiodic, consequently also
ergodic. It follows that there are probability vectors ,

, such that , ,
. Just like in the STAR case, from

we obtain a limiting (equilibrium) action probability
vector .

In the general case, when , , the equilib-
rium action probabilities cannot be expressed in a compact form.
However, we can find compact expressions for special cases.

1) Deterministic Reward–Deterministic Penalty:In this
case , . We obtain (see the Appendix)

(52)
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With a little additional algebra it can be seen that the above
action probabilities are very similar to the ones of the Tsetlin
automaton [4, p. 68].

2) Deterministic Reward–Probabilistic Penalty:In this case
, . We obtain (see the Appendix)

(53)

This is similar to (52) and also to the Tsetlin automaton
[4, p. 68]. But there is an important difference: in place of
we have . It must be emphasized that
for any value of , the can be made smaller
than 1/2 by appropriate choice of. As will be seen in Theorem
1, it follows that the deterministic reward–probabilistic penalty
STAR can be made-optimal in any environment by appro-
priate choice of .

3) Probabilistic Reward–Deterministic Penalty:In this case
, . We obtain (see the Appendix)

(54)

In all of the above, when , we recover the STAR
case. Furthermore, if there is at least one , from (52) we
see that STAR is -optimal. In fact, we can show a stronger
result: by appropriate choice of, theprobabilistic reward–de-
terministic penalty STAR can be rendered-optimal in every
environment; this is proved below.

Theorem 1: Take any environment . Define
.

i) If , then the deterministic reward–deterministic
penalty STAR is -optimal.

ii) For all , the deterministic reward–probabilistic
penalty STAR is -optimal.

Proof: i) Assume, without loss of generality, that
. Define for and note

that is the maximum of and, in fact, .
Choose any and take the ratio

(55)

The first fraction is independent of and does not affect con-
vergence. There are two cases for the second fraction.

a) If , then the numerator tends to1 and the denomi-
nator to , hence the fraction goes to zero.

b) If , then the whole fraction tends to . How-
ever, we have assumed that , hence goes to
zero again.

Hence, (for ).
Since for every we have , it follows that

, for , and the proof
of -optimality is complete.

ii) For every and for define
and . Fur-

thermore, define . It is easy to check that for
all we have , which implies [by the same
argument used for i)] the-optimality of the deterministic re-
ward–probabilistic penalty STAR . Furthermore, note that in
everyenvironment . Hence, inevery
environment guarantees-optimality.

Hence, STAR is expedient, just like , and the
deterministic reward/probabilistic penaltySTAR can be
made -optimal, just like . Furthermore, as will be seen
in the next section, the STAR automata are generally faster than
the corresponding variable structure automata. They are also
easier to implement, requiring no floating point multiplications.
Finally, STAR automata are mathematically more tractable,
since they can be analyzed by the theory of finite Markov
chains; the analysis of behavior requires the use of
stochastic difference equations and an approximation argument
[4, pp. 166–168].

V. EXPERIMENTS

In this section, we present some computer simulation results
to compare the performance of STAR to that of ,

, and . The automata are compared for various
values of the environment penalty probabilities in a switching
environment where the best action changes periodically. An
experiment is determined by automaton and environment
parameters.

The automata parameters are: depthfor STAR ; learning
rate for and ; and learning rates and for

. For every experiment, we have tried ten different values
of depth and ten different values of learning
rate : 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 0.70, 0.80, 0.90, 0.99.
Regarding the automaton, must also be specified; we
have used: and . We have used ten actions in
all experiments.

Regarding the environment parameters, there
are ten penalty probabilities , .
The smallest penalty probability is for times

and for times
. Hence, in

every period of 50 time steps, the learning automaton has to
readjust to the best action. We have chosen nine different sets
of s resulting in nine different experiments. Ourchoices
are summarized in Table I.

The duration of the experiment is 5000 time steps, which
means there are 100 switchings of the penalty probabilities. The
run length of 5000 steps was sufficient to reach steady-state be-
havior. Here “steady-state” refers to the time averaged cost in-
curred by each automaton, which after the first couple thousand
steps reaches equilibrium and fluctuates around a mean value.
In fact, convergence of average cost occurs within at most 2000
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TABLE I
CUMULATIVE RESULTS OF THENINE EXPERIMENTS. THE COST AVERAGED OVER TEN RUNS, EACH OF 5000 STEPS, IS SHOWN FOR

THE BEST STAR , L , L , AND L AS WELL AS FOR THESTAR

steps; an example of this can be seen in Fig. 2. The action prob-
abilities, on the other hand, periodically change values to follow
the environment evolution. We have also run longer simulations
(e.g., 10 000 steps, not reported here), but no appreciable change
of the average cost was observed. Each 5000-steps run is re-
peated ten times and the average costs incurred by the STAR,

, , and automata are computed and com-
pared to each other, to the optimal cost and to the theo-
retical cost , where and are given by (12).
In Figs. 3–5, we compare the average cost for all, , and
values, for three representative experiments.

The cumulative results can be seen in Table I. Namely, we
compare the cost of the best STAR to that of the best ,

, and , as well as to theoretical cost and op-
timal cost . Finally, we also list the cost of STAR. The
minimum cost attained is denoted in bold. We note that in Ex-
periments 1–9, the best STAR outperforms the best ;
in Experiments 1–7, it also outperforms the best and

, while in Experiments 8 and 9, STAR , , and
performance is very close, as can be seen in Fig. 6 (refer-

ring to Experiment 8) and in Fig. 7 (referring to Experiment 9).

In particular, for Experiment 9, where all the actions are associ-
ated with very high penalty probabilities (hence, the choice of
action is practically immaterial)all automata incur practically
the same average cost, between 0.888 and 0.897 (note the re-
duced scaling of the-axis in Fig. 7).

In an unknown environment, the optimal value of, , and
will not be known in advance. However, in Table I, we see that
the value yields uniformly good results for all environ-
ments tested: the cost of STARis either very close or, in many
cases, quite lower than that of , and very close to . In
short, STAR gives uniformly good performance in a variety
of unknown environments.

Regarding the issue of convergence, consider Fig. 8(a)–(c)
(referring to Experiment 4) and Fig. 9(a)–(c) (referring to Ex-
periment 6). In each of these cases, we present the evolution of
action probability for 250 steps, encompassing five penalty
probability switchings.

In Fig. 8(a), we compare action probabilitiesof STAR
and with . The optimal behavior would be the
following: in the time intervals 1–50, 101–150, and 201–250,

should be equal to one, since action 1 has the lowest penalty
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Fig. 2. Average cost (for times 1 tot) plotted versus timet. This refers to one of the ten runs of Experiment 6. Average costs incurred by STAR, L ,
L , and the two examples ofL are shown. It can be seen that byt = 2000, average cost has converged to a steady-state value for all automata.

Fig. 3. Experiment 3. Average STAR cost as a function ofD; averageL andL cost as a function ofa; averageL cost as a function ofa; b.

probability; in the time intervals 51–100 and 151–200,should
be zero, since now action 2 has the lowest penalty probability.
For STAR, we see that after a few stepsbecomes one and
stays there until penalty probability switching; shortly after-
wards it becomes zero. The same pattern occurs at every penalty
probability switching, STAR successfully following the envi-
ronment. with has unstable response and is less
successful in following the environment. It is worth noting that
the high learning rate (which, we repeat, gave the best results
for ) essentially results in behavior resembling that of an
FSS automaton. In Fig. 8(b), we compare action probabilities
of STAR and with and . Since the

STAR is the same as in Fig. 7, the same conclusions hold. For
, in this case we have and . The small

learning rates result in slower response, with the automaton lag-
ging behind environment switchings. In Fig. 8(c), we compare
action probabilities of STAR and with
and . Again, is slower and less successful than
STAR in responding to environment switchings. The high,

values again result in the displaying near-FSSA be-
havior. Similar conclusions can be drawn from Fig. 9(a)–(c),
which pertain to Experiment 6. Moreover, STAR responds to
environment switchings almost instantaneously. Figs. 8 and 9
support the conclusion that STAR responds faster than ,
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Fig. 4. Experiment 4. Average STAR cost as a function ofD; averageL andL cost as a function ofa; averageL cost as a function ofa; b.

Fig. 5. Experiment 6. Average STAR cost as a function ofD; averageL andL cost as a function ofa; averageL cost as a function ofa; b.

, and to environment switchings. As we have al-
ready seen, in general, it also incurs smaller average cost.

VI. CONCLUSIONS

In this paper, we compared the performance of traditional
VSS automata to that of a new class of FSS automata, the
so-called STAR . Theoretical analysis leads to the following
conclusions for a stationary environment. First, STARwith
deterministic reward and penalty has the same equilibrium
action probabilities and expected cost as . Second, the
introduction of probabilistic penalty makes STAR per-
form better than . Finally, when depth is increased,
STAR with deterministic reward and probabilistic penalty
can be rendered-optimal in every environment. We have

also performed a number of computer experiments, comparing
the performance of , , , and STAR
in nonstationary environments. The conclusion is that in
every case, STAR outperforms ; in most cases, it also
outperforms and , except when all actions have
very high penalty probabilities, in which case all automata
have approximately the same performance. In addition, there
is a depth value , which uniformly yields near-optimal
results. When the environment parameters are unknown, it is
useful to know that for a uniformly good performance
can be achieved. Summarizing, the STAR automata have the
following advantages over traditional VSS automata:

1) they generally give better performance;
2) they converge faster;
3) they are simpler to implement.
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Fig. 6. Experiment 8. Average STAR cost as a function ofD; averageL andL cost as a function ofa; averageL cost as a function ofa; b.

Fig. 7. Experiment 9. Average STAR cost as a function ofD; averageL andL cost as a function ofa; averageL cost as a function ofa; b.

In the future, we intend to compare STAR to discretized
VSSA and examine the possibility of implementing estimation
and pursuit algorithms by FSSA. We hope our conclusions
will stimulate renewed research on FSSA to obtain further
high-performance, simple-implementation learning algorithms.

APPENDIX

MATHEMATICAL APPENDIX

A. STAR State Transition Matrix

First, we derive equations for the state transition matrixfor
STAR . This matrix depends on the parametersand , which
lie in the interval [0, 1]. We will first derive (35) and (36) for
general and ; then we will take and/or equal to zero to
derive (9), (17), (18), (26), and (27) as special cases.

For instance, let us compute , in other words, the proba-
bility of transition from state 0 to state 0. We have

(56)
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Fig. 8. (a) Experiment 4. 250 time steps profiles of STAR(D = 2) p probability (solid line) andL (a = 0:99) p probability (dotted line). (b)
Experiment 4. 250 time steps profiles of STAR (D = 2) p probability (solid line) andL (a = 0:20; b = 0:02) p probability (dotted line). (c)
Experiment 4. 250 time steps profiles of STAR (D = 2) p probability (solid line) andL (a = 0:90; b = 0:18) p probability (dotted line).

Similarly, for

(57)

Equations (56) and (57) are equivalent to (35). We also have for



ECONOMIDES AND KEHAGIAS: STAR AUTOMATION: EXPEDIENCY AND OPTIMALITY PROPERTIES 735

Fig. 9. (a) Experiment 6. 250 time steps profiles of STAR(D = 2) p probability (solid line) andL (a = 0:99) p probability (dotted line). (b)
Experiment 6. 250 time steps profiles of STAR (D = 2) p probability (solid line) andL (a = 0:90; b = 0:09) p probability (dotted line). (c)
Experiment 6. 250 time steps profiles of STAR (D = 2) p probability (solid line) andL (a = 0:990; b = 0:198) p probability (dotted line).

(58)
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and

(59)

Equations (58) and (59) are equivalent to (36). Now, letting
, arbitrary, from (58) and (59) we obtain (26) and (27); letting

, arbitrary, from (58) and (59) we obtain (17) and (18);
letting , , from (58) and (59) we obtain (9) and we
are done.

B. STAR Equilibrium Probabilities

Next, we obtain closed-form expressions for the equilibrium
state and action probabilities of STARfor the case where ei-
ther or or both are zero.

We first consider the case and . As discussed
in Section III, , the state process, is irreducible and ape-
riodic, hence ergodic, and it possesses a limiting equilibrium
(stationary) probability, called. To obtain , we start with the
equilibrium equation . This matrix equation actually
consists of scalar equations. Writing the lastof these
explicitly, we get for

This, together with the fact that yields

which are exactly (10). To obtain (11), we observe that action
can only be taken when in state 0 or in state. Hence, for

, we have

which is exactly (11).
If in place of we use , then (17) and

(18), which define , take exactly the same form as (9). Hence,
the equilibrium probabilities and the action probabilitiesare
also of exactly the same form as (10) and (11), except that we
have in place of . This yields (19) and (20). Similarly, if we
use in (26) and (27), , we obtain (28) and
(29) and we are done.

C. STAR

We now turn to STAR . The computation of the state tran-
sition matrix is the same as for STAR and is not re-

peated. We now compute the equilibrium probabilities . In
what follows,. we drop the superscriptfor the sake of brevity.

We start with , . , the state process, is irre-
ducible and aperiodic, hence ergodic, and it possesses a limiting
equilibrium (stationary) probability . For the th branch of the
star ( ) we obtain terminal conditions

(60)

and intermediate conditions

(61)

Combining (60) and (61), we get

and

(62)

From this it follows that
( ). Since , we get

which implies (for , )

(63)

and

(64)

To obtain the equilibrium probability for action, add (64) and
(63) for

(65)

(for ). This yields (52). For the cases ,
, , and , we use appropriate substitutions

[just like for the case STAR ] and obtain (53) and (54).
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