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Abstract11

1 Device-to-Device (D2D) communication is expected to be a key feature sup-
ported by 5G networks, especially due to the proliferation of Mobile Edge Com-
puting (MEC), which has a prominent role in reducing network stress by shifting
computational tasks from the Internet to the mobile edge. Apart from being part
of MEC, D2D can extend cellular coverage allowing users to communicate di-
rectly when telecommunication infrastructure is highly congested or absent. This
significant departure from the typical cellular paradigm imposes the need for de-
centralised network routing protocols. Moreover, enhanced capabilities of mobile
devices and D2D networking will likely result in proliferation of new malware
types and epidemics. Although the literature is rich in terms of D2D routing
protocols that enhance quality-of-service and energy consumption, they provide
only basic security support, e.g., in the form of encryption. Routing decisions can,
however, contribute to collaborative detection of mobile malware by leveraging
different kinds of anti-malware software installed on mobile devices. Benefiting
from the cooperative nature of D2D communications, devices can rely on each
others’ contributions to detect malware. The impact of our work is geared to-
wards having more malware-free D2D networks. To achieve this, we designed and
implemented a novel routing protocol for D2D communications that optimises
routing decisions for explicitly improving malware detection. The protocol iden-
tifies optimal network paths, in terms of malware mitigation and energy spent
for malware detection, based on a game theoretic model. Diverse capabilities of
network devices running different types of anti-malware software and their po-
tential for inspecting messages relayed towards an intended destination device

1 〈2016〉. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
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are leveraged using game theoretic tools. An optimality analysis of both Nash
and Stackelberg security games is undertaken, including both zero and non-zero
sum variants, and the Defender’s equilibrium strategies. By undertaking net-
work simulations, theoretical results obtained are illustrated through randomly
generated network scenarios showing how our protocol outperforms conventional
routing protocols, in terms of expected payoff, which consists of: security damage
inflicted by malware and malware detection cost.

Keywords: Device-to-Device (D2D) communications, iRouting protocol,12

Malware detection games, Game theory.13

1. Introduction14

Demand for anytime-anywhere wireless broadband connectivity and increas-15

ingly stringent Quality of Service (QoS) requirements pose new research chal-16

lenges. As mobile devices are capable of communicating in both cellular (e.g. 4G)17

and unlicensed (e.g. IEEE 802.11) spectrum, the Device-to-Device (D2D) net-18

working paradigm has the potential to bring several immediate gains. Network-19

ing based on D2D communication [1, 2, 3, 4, 5] not only facilitates wireless and20

mobile peer-to-peer services, but also provides energy efficient communications,21

locally offloading computation, offloading connectivity, and high throughput. The22

most emerging feature of D2D is the establishment and use of multi-hop paths to23

enable communications among non-neighbouring devices. In multi-hop D2D com-24

munications, data are delivered from a source to a destination via intermediate25

(i.e. relaying) devices, independently of operators’ networks.26

1.1. Motivation27

To motivate the D2D communication paradigm, we emphasise the need for28

localised applications. These run in a collaborative manner by groups of devices29

at a location where telecommunications infrastructures: (i) are not present at30

all, e.g. underground stations, airplanes, cruise ships, parts of a motorway, and31

mountains; (ii) have collapsed due to physical damage to the base stations or32

insufficient available power, e.g. areas affected by a disaster such as earthquake;33

or (iii) are over congested due to an extremely crowded network, e.g. for events34

in stadiums, and public celebrations. Furthermore, relay by device can be lever-35

aged for commercial purposes such as advertisements and voucher distributions36

for instance in large shopping centres. This is considered a more efficient way of37

promoting businesses than other traditional methods such as email broadcast-38

ing and SMS messaging due to the immediate identification of the clients in a39

surrounding area. Home automation and building security are another two areas40

that multi-hop data delivery using D2D communications is likely to overtake our41
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daily life in the near future while multi-hop D2D could be also leveraged towards42

the provision of anonymity against cellular operators [6].43

A key question related to multi-hop D2D networks is, which route should the44

originator of some data choose to send it to an intended destination?. This has45

been exhaustively investigated in the literature of wireless and mobile ad hoc46

routing with well-known protocol to be among others AODV [7], DSR [8], and47

OLSR [9]. A thorough survey of standardisation efforts in this field has been48

published by Ramrekha et al. [10].49

Due to the myriad number of areas D2D communications are applicable to,50

devices are likely to be an ideal target for attackers who aim to infect devices51

with malware. Authors in [11] point out that malware in current smartphones52

and tablets have recently rocketed and established its presence through advanced53

techniques that bypass security mechanisms of devices. Malware can spread, for54

instance, through a Multimedia Messaging System (MMS) with infected attach-55

ments, or an infected message received via Bluetooth aiming at stealing users’ per-56

sonal data or credit stored in the device. An example of a well-known worm that57

propagates through Bluetooth was Cabir, which consists of a message containing58

an application file called caribe.sis. Apart from malware infection, Khuzani et59

al. [12] have investigated outbreaks of malware (i.e. malware epidemics) mainly60

by adopting the notion of D2D communication. Finally, social engineering at-61

tacks against mobile phones is one of the most serious threats, as presented in a62

relevant survey here [13]. For thorough surveys on mobile malware one may refer63

to [11, 14].64

1.2. Innovation65

In a nutshell,this paper presents a novel routing protocol, for D2D commu-66

nications, that supports malware detection in an optimal way by using non-67

cooperative game theoretic tools, which have been extensively used in the secu-68

rity literature (e.g. [15]) and in D2D routing (e.g. [16]). Game theory has also69

been used for other than routing purposes [17], [18, 19] in D2D networks. In this70

paper we only focus on security games and we tackle a decision-making routing71

challenge, in D2D networks, in presence of an adversary who injects malware72

into the network, after she has compromised a gateway that connects the D2D73

network with the cloud. This assumption is fairly realistic given the vast power74

attackers have in their hands these days to successfully exploit vulnerabilities of75

modern gateways. Our underlying network has been inspired by the Mobile Edge76

Computing (MEC) (also refer to as Fog Computing) paradigm as a step towards77

addressing security within the realm of an increasingly important area of 5G.78

Our protocol, called iRouting (abbreviating “intelligent Routing”), is de-79

signed upon the theoretical analysis of a simple yet illuminating two-player se-80

curity game between the Defender, which abstracts a D2D network, and the81
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Attacker, which abstracts any adversarial entity that wishes to inject malware82

into the D2D network. We have proven that the Defender’s equilibrium strategies83

leave the network better off, in terms of expected payoff, which is a combination84

of security damage and malware detection cost (i.e. cycles process units). Note85

that iRouting can work on top of underlying physical and MAC layer protocols86

[20, 21].87

It is worth noting that this paper does not tackle secure routing issues in88

traditional ways. For a survey of secure routing protocols for wireless ad hoc89

networks, see [22, 23]. Such protocols mainly aim at enabling confidentiality,90

and integrity of the communicated data and they do not consider underlying91

collaborative malware detection.92

1.3. Progress beyond relevant work93

This paper extends, in a significant manner, the results initially presented in94

[24]. The exact differences are summarized below.95

• [24] assumes a pure device-to-device network while in this paper the device-96

to-device network has been enriched with a part of mobile edge comput-97

ing. The network devices request services from the MEC server and multi-98

hopping enables communication between the MEC server and the different99

devices to overcome proximity issues due to the latter being outside the100

transmission range of the server. In this paper, the security challenge is101

how to safely utilise MEC services where a cluster-head (i.e. MEC server)102

might be compromised by an adversary. Although this does not introduce103

any new challenge in terms of malware detection and routing, it is an as-104

sumption that places the idea of the paper within mobile edge computing105

and 5G architectures.106

• This paper assumes different mobile operating systems and these can be107

infected with different types of malware as opposed to [24], which goes as108

far as considering just a set of malicious messages that are sent from the109

attacker’s device to infect the legitimate devices. This also has the effect of110

defining, in this paper, the Malware Detection Game whereas in [24], the111

defined game is called Secure Message Delivery Game.112

• In [24], a confusion matrix is defined to determine how the different devices113

of the network can detect malicious messages. In this paper here we take114

a more realistic, in the terms of cyber security, approach where for each115

device there is a probability to be compromised by malware. Therefore,116

each route has, in turn, a penetration level, which is the probability the117

route to be compromised due to one or more devices on it being vulnerable.118
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• In [24], the details about the interdependencies of malicious message de-119

tectors is not discussed, while in our paper here we explicitly say that120

each control detects different signs of malware and no interdependencies, in121

terms of detection capabilities, are assumed, i.e. we have assumed that an122

anti-malware control is the minimal piece of software that detects certain123

malicious signs.124

• In [24], the Attacker is not assumed to monitor the network before launching125

a malware attack (no reconnaissance) while in our paper here the Attacker126

surveils the network before injecting malware giving us a Stackelberg game127

to study.128

• In [24], only Nash Equilibria (NE) and maximin strategies have been stud-129

ied. On the other hand, our paper here derives Strong Stackelberg Equi-130

libria (SSE) and shows the relationship among three of them; SSE, NE131

and maximin. Not only that, but this paper exhibits much larger depth of132

mathematical analysis referring also to best responses of players. Finally,133

it proves the equality of strategies of different games, such zero-sum and134

non-zero sum across all strategic types (Nash, Stackelberg, maximin).135

• Although Panaousis et al. [24] has investigated both zero sum and non-zero136

sum games, where in the latter the utility of the Attacker is a positive affine137

transformation (PAT) of the defender’s utility, in this paper we go beyond138

that. We show the equality of the different strategies holds in a more generic139

(i.e. than the PAT case) payoff structure where the Attackers utility is a140

strictly positive scaling of the Defender’s utility.141

• All simulations in [24] were numeric; as well as they do not compare the142

performance of the proposed routing protocol with other device-to-device143

routing protocols. For the purposes of our paper here we have undertaking144

a network simulation to compare the proposed protocol with legacy routing145

protocols using the OMNeT++ network simulator. In this way we have146

simulated physical and link-layer network characteristics.147

• In our paper here, we have considered, in our simulations, the efficacies of148

some of the most-recent real-world anti-malware controls against real-world149

malware types as opposed to the purely numeric assignment to the different150

variables.151

• In our simulations here, we have included a new Attacker type, called152

Weighted, which allows the adversary to distribute her resources propor-153

tionally, over the different routes, aiming at the highest expected dam-154

age. This type of Attacker was not simulated in [24].155
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1.4. Main assumptions156

Our analysis assumes that each device has some malware detection capabili-157

ties (e.g. anti-malware software). Therefore, a device is able to detect malicious158

application-level events. In other words, each device has its own detection rate159

which contributes towards the overall detection rate of the routes that this de-160

vice is part of. In order to increase malware detection, the route with the highest161

detection capabilities must be selected to relay the message to the destination.162

However, due to the different malware types available to attackers, these days,163

such a decision is not trivial. One could argue that if we know the probability164

of a malware type to be chosen, we can develop a proportional routing strategy,165

which will distribute security risks across the different routes by choosing routes166

in a proportional, to their malware detection capabilities, manner. Since this167

knowledge can not be taken for granted in addition to the volatile nature of168

such statistics, in this paper we use game theory to optimise routing decisions to169

support malware detection in D2D networks, regardless of the probability of the170

different malware to be used by the Attacker.171

1.5. Outline172

The remainder of this paper is organised as follows: In Section 2, we review173

related work with more emphasis to be given in papers at the intersection of game174

theory, security, and routing for wireless ad hoc networks (i.e. prominent example175

of D2D networking). In Section 3, we present the system and game models, while176

in Section 4, we devise game solutions. In Section 5, we undertake optimality177

analysis which leads to a list of theoretic contributions. Section 6 describes, in178

detail, the iRouting protocol, and in Section 7, we compare iRouting against179

other routing protocols. Finally, Section 8 provides concluding remarks and points180

towards future research.181

2. Related work182

In this section, we briefly review the state-of-the-art, in chronological or-183

der, in terms of game theoretic approaches at the intersection of three fields:184

security, routing, and device-to-device networks. Another set of game theoretic185

works that focus on optimising intrusion detection strategies per se than adjust-186

ing routing decisions to optimally support intrusion detection, consist of papers187

such as [25], [26], [27], [27], [28], [29], [30], and [31]. Our work is complementary188

to this literature as it optimises end-to-end path selections, in terms of malware189

detection efficacy and computational effort.190

Looking more into decision regarding packet forwarding by using game theo-191

retic tools and without incentive mechanisms in place, Felegyhazi et al. [32] have192
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studied the Nash equilibria of packet forwarding strategies with tit-for-tat punish-193

ment strategy in an iterative game. In each stage (i.e. time slot) of the game, each194

device selects its cooperation level based on the normalised throughput it experi-195

enced in the previous stage. As opposed to iRouting, the authors do not propose196

a new end-to-end routing protocol; instead they consider a shortest path algo-197

rithm. Also, they assume the existence of internal malicious or selfish nodes in198

contrast to our work here, which models an adversary outside of the D2D clus-199

ter, who aims to infect legitimate devices with malware.200

In a more security-oriented vein, Yu et al. [33] have used game theory to study201

the dynamic interactions, in mobile ad hoc (device-to-device) networks, between202

“good” nodes, which initially believe that all other nodes are not malicious, and203

“adversaries”, which are aware of which nodes are good. They propose secure204

routing and packet forwarding games that consist of 3 stages: route participa-205

tion; route selection; and packet forwarding. In the first stage, a node decides206

whether to be part of route or not; in the second phase, a node who wishes to207

send a packet to a destination, after it discovers a valid route (called when all208

nodes agree to be part of it), it either uses the discovered route or not; and, fi-209

nally, in the third phase, each relay node decides to forward or not an incoming210

packet. They have derived optimal defence strategies and studied the maximum211

potential damage, which incurs when attackers find a route with maximum num-212

ber of hops and they inject malicious traffic into it. The same authors also com-213

bined this game with a secure routing game but without considering noise and214

imperfect monitoring. Yu et al. [34] extended [33] and proposed a secure cooper-215

ation game under noise and imperfect monitoring. Likewise, Yu and Liu tackled216

the same challenge and presented a richer set of performance evaluation results in217

[35]. The above publications do not tackle the same challenge with iRouting, as218

they do not investigate the selection of a route among an available set of routes219

to deliver packets from a source to a destination220

Finally, in [36], Panaousis and Politis present a routing protocol that respects221

the energy spent by intrusion detection on each route and therefore prolonging222

network lifetime. This paper takes a simple approach, according to which the223

attacker either attacks or not a route, and the Defender, likewise, decides whether224

to allocate resources to defend or not.225

None of the aforesaid protocols consider the propagation of malware within226

the network and none of these works investigates Stackelberg games, which ba-227

sically assume that the Attacker conducts surveillance before deciding upon her228

strategy. This is a reasonably realistic assumption when looking at the intelli-229

gence of cyber hackers and it is a conventional decision in other security related230

fields [37, 38, 39, 40].231
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3. System description and game model232

This section presents our underlying system model along with its compo-233

nents. Mobile-edge computing (MEC) is an emerging paradigm that allows mobile234

applications to offload computationally intensive workloads to a MEC server. This235

introduces a new network architecture concept that provides cloud-computing ca-236

pabilities at the edge of the mobile network. The MEC server is likely to be setup237

by a service provider to ensure that it can provide a service environment with238

very low latency and high-bandwidth.239

3.1. System description240

We use a motivational paradigm demonstrating how D2D communication can241

be combined with a MEC architecture [41], as depicted in Fig. 1. In our model,242

MEC is an intermediate layer between a D2D cluster and the cloud, aiming at243

low-latency service delivery from the latter to the former, and it can serve users244

by using local short-distance high-rate connections. The intermediate layer can245

contain a number of deployed MEC servers aiming to handle the localised requests246

issued by cluster users.247

We assume that devices within a cluster can communicate in a D2D manner:248

directly or by using multi-hop routes. The cluster is formed based on discovery249

protocols that run in each device. These allow to sense the environment and250

create a list of one-hop neighbours in order to be able to communicate should251

any request to forward data or a direct request be sent. We also assume no cellular252

infrastructure within the cluster, which means that devices can only communicate253

in a device-to-device fashion.254

It is envisaged that such scenarios will be very common in 5G ecosystems255

where heterogeneous wireless technologies (e.g. NB-LTE, WiFi, ZigBee, Blue-256

tooth) will facilitate D2D communication [3]. For example, a device that seeks257

some data, can request this from other devices in its cluster, and if the Request258

cannot be served the MEC servers must be contacted to assist with the discovery259

of this data.260

The idea here is that a MEC server is dedicated to provide predefined service261

applications to cluster users without the need to communicate with the cloud262

so that it accelerates responses while “pushing” the cloud away of the user. We263

assume that each D2D cluster has a cluster-head [42], which is a device that264

communicates with the MEC servers. The main functionalities of a cluster-head265

are (i) to forward the Request of a device to the MEC servers, and (ii) upon266

its response, to transmit the Reply back to the requestor. In this work, the267

cluster-head can be any device of the cluster. The MEC server is expected to268

talk to both the cloud servers and the cluster-head to handle functionalities such269

as device identifier allocation, call establishment, UE capability tracking, service270

support, and mobility tracking. Note that the election of the cluster-head is not271
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investigated in this paper and also this paper is not concerned about deciding272

the nature of the cluster-head.273

3.2. Adversarial model274

As any open wireless environment, akin to one described in this paper, can275

be a target of adversaries. More specifically, in this paper, we assume the exis-276

tence of a malicious device, called the Attacker, that can launch a Man-In-the-277

Middle (MITM) attack by hijacking the link between the cluster-head and MEC278

servers. Our analysis adopts the Dolev-Yao model [43]. According to this, the279

D2D network, along with its established connection with the MEC servers, is280

represented as a set of abstract entities that exchange messages. Yet, the adver-281

sary is capable of overhearing, intercepting, and synthesising any message and282

she is only limited by the constraints of the deployed cryptographic methods. We283

enrich this adversarial model by considering “compromised MEC servers”. This is284

to say that the adversary per se could be inside a legitimate MEC server interact-285

ing with the cluster-head by using valid credentials and having privileged access286

to MEC servers. In this way, the adversary can inject a fake Reply, crafted with287

malware, and send it back to the data requestor aiming at infecting her device.288

3.3. Malware detection289

In this adversarial environment, we envisage the use of anti-malware controls290

running in each device. These can be responsible for scanning network traffic for291

patterns to detect known malicious attempts. Each device may even respond to292

newly detected attack methods (anomaly-based detection). Upon detection, de-293

vices can block messages that are likely to consist of insecure content preventing,294

in this way, the spread of malware to other devices within their cluster. This as-295

sumption can be seen as an advanced application of the next-generation firewalls296

to mobile devices. Although in this paper we assume that any detected malice is297

blocked by the device that has successfully undertaken the inspection, our work298

can be extended to support collaborative (e.g. reputation-based) filtering towards299

blocking messages that end up having a bad reputation. Such an approach can300

take advantage of learning techniques and its investigation will be part of our301

future work.302

3.4. Formulation303

Let us assume a cluster of N devices. We denote by C its cluster-head, and by304

Rqs the requestor of some data. Henceforth we will refer to this data as D. If the305

latter can not be found within the cluster itself, Rqs must seek D hosted by the306

MEC servers of its cluster. Thus, C receives a Request from Rqs, and it then307

queries the MEC server.308
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Figure 1: Investigated system model, where a device requests data, that the cluster devices do
not possess, from the MEC server. The adversary has successfully launched a MITM attack
controlling the communication between cluster-head and MEC server.

When C receives back a Reply from the MEC server and Rqs is not within309

its transmission range, a route r must be established to deliver D from C to310

Rqs. Therefore, there is a need for the devices to relay D towards Rqs, but before311

that, C must decide upon r. We assume R routes available between C and Rqs,312

we denote by rj ∈ [R], the jth route, and the set of devices that constitute rj313

are expressed by Sj . Note that we use the notation [Ξ] to represent the set of Ξ314

elements.315

Although the route selection can be entirely taken based on quality-of-service316

parameters optimising network delay and jitter, the presence of an Attacker, let317

it be A, introduces uncertainty with regards to the malice of the data conveyed318

toward Rqs. For instance, if A controls the link C ⇐⇒ MEC, then D can be319

anything including malware. If this is the case, Rqs, which trusts C, is very likely320

to be infected by this malware. In this paper, the infection risk depends on the321

likelihood the malware to be collaboratively detected prior to the data being used322

by Rqs. This detection relies on devices that forward packets to Rqs, as these are323

also inspecting the incoming and outgoing network traffic.324

Let us consider Λ different mobile operating systems, and Mλ different mal-325

ware available to the Attacker to infect devices that run a mobile operating system326

λ ∈ [Λ]. Each device may run one or more anti-malware controls and for each λ327

we assume AMλ anti-malware controls, which can mitigate malware that targets328

devices running λ.329

Let us also assume S devices and a device si ∈ [S], which runs λ, might
have available a combination of anti-malware controls given by the set [AM i

λ] ⊆
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[AMλ]. We use the characteristic function2 1[AM i
λ] : [AMλ] → {0, 1} defined as

follows:

1[AMλ](az) :=

{
1, if az ∈ [AMλ],

0, if az /∈ [AMλ].
(1)

to express whether a control az is installed in si or not.330

We express by d(ml, az) ∈ [0, 1) the effectiveness of anti-malware control az
in mitigating ml ∈ [Mλ]. As a device can run one or more anti-malware controls,
and each control az has 1 − d(ml, az) probability of failing to detect ml, the
probability of si failing to detect ml equals

p(si,ml) :=
∏

az∈[AMλ]:1[AMλ]
(az)=1

[1− d(ml, az)] . (2)

Note that each control detects different signs of malware and no interdependen-331

cies, in terms of detection capabilities, are assumed in this paper. To put it332

differently, we have assumed that an anti-malware control is the minimal piece333

of software that detects certain malicious signs.334

We define as335

p(si) := [p(si,ml)]ml∈[Mλ] ∈ [0, 1]Mλ . (3)

the vector of failing detection probabilities, which captures the effectiveness of si336

on detecting malware of the set [Mλ]. One challenge here is to be able to derive337

these probabilities in practice. This, for instance, can be done by undertaking338

thorough penetration tests (i.e. ethical hacking) to assess the efficacy of each339

anti-malware control. These tests can be performed offline for individual software340

components and then their combinations can be deployed on the devices. As a341

result of this we can derive the probability of ml to infect Rqs, when C uses the342

jth route for data delivery, as follows:343

p(rj ,ml) :=
∏
si∈Sj

p(si,ml). (4)

Thus, we define as p(rj) := [p(rj ,ml)]ml∈[M ] the vector of probabilities rj to be344

infected by the different malware. For more convenience, Table 1 summarizes the345

notation used in this paper.346

2this is a function defined on a set X that indicates membership of an element in a subset
X ′ of X, having the value 1 for all elements of X ′ and the value 0 for all elements of X not in
X ′.
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Table 1: List of Symbols

Symbol Description Symbol Description

[N ] set of N devices C cluster-head

Rqs data requestor D requested data

[R] set of routes from C to Rqs rj j-th route

Sj set of devices on rj A attacker

[Λ] set of mobile operating systems λ operating system

[Mλ] set of malware that can infect λ [AMλ]
set of anti-malware controls for
λ

[S] set of devices si i-th device

ml l-th malware d(ml, az) effectiveness az in mitigating ml

p(si,ml)
probability of si failing to detect
ml

p(si)
vector of “failing-to-detect”
probabilities of si for different
malware

p(rj ,ml)
probability of Rqs to be infected
with malware ml when D is sent
over rj

p(rj)
vector of infection probabilities
for rj and all malware types

[M ] set of malware ρ defender’s mixed strategy

µ attacker’s mixed strategy S(rj ,ml)
expected security damage on
route rj when relaying ml

c(si) malware detection cost on si C(rj) malware detection cost on rj
H(ml) security loss inflicted by ml L path length

Cj
set of computational malware
inspection costs c(si) in rj

Tj
set of malware inspection capa-
bilities p(si) in rj

3.5. Game model347

Now that we have defined our system model by describing its components and348

their relationship, in the rest of this section, we use game theory to investigate349

the optimal strategic routing decisions of C, the Defender, and the Attacker who350

aims to infect one of the cluster devices with mobile malware. The Attacker’s351

objective is to succeed an attack against Rqs and the Defender must select a352

route to deliver the Reply to Rqs.353

We define the Malware Detection Game (MDG) between Defender and At-354

tacker, as an one-shot, bimatrix game of complete information played for each355

requestor that seek some data. The set of pure strategies of the Defender consists356

of all possible routes, rj ∈ [R], from C to Rqs. On the other hand, the pure strate-357

gies of the Attacker are the different malware ml ∈ [M ] that can be injected into358

the D2D network in the form of a Reply. Thus, in MDG a pure strategy profile359

is a pair of Defender and Attacker actions, (rj ,ml) ∈ [R] × [M ] giving a pure360

strategy space of size R×M . For the rest of the paper, the convention is adopted361

where the Defender is the row player and the Attacker is the column player.362

Each player’s preferences are specified by her payoff function, and we define363

as Ud : (rj ,ml)→ R− and Ua : (rj ,ml)→ R+ the payoff functions of the Defender364
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and Attacker, respectively, when the pure strategy profile (rj ,ml) is played. Ac-365

cording to [44], we define a preference relation %, when ml is chosen by the366

Attacker, by the condition rx % ry, if and only if Ud(rx,ml) ≥ Ud(ry,ml). In gen-367

eral, given the set [R] of all available routes from C to Rqs, a rational Defender can368

choose a route (i.e. pure strategy) r∗ that is feasible, that is r∗ ∈ [R], and optimal369

in the sense that r∗ % r, ∀ r ∈ [R], r 6= r∗; alternatively she solves the problem370

maxr∈[R] Ud(r, ml), for a message ml ∈ [M ]. Likewise, we can define the prefer-371

ence relation for the Attacker, where mx % my ⇐⇒ Ua(rj ,mx) ≥ Ua(rj ,my), for372

a route rj ∈ [R].373

MDG can be seen as a game per session, where the start of each session is374

signified by the transmission of a new Reply that the cluster-head will send to375

Rqs; it is also realistic to assume that over a time period, there will be multi-376

ple sessions. To derive optimal strategies for the Defender during the repetitions377

of MDGs, we deploy the notion of mixed strategies. Since players act indepen-378

dently, we can enlarge their strategy spaces, so as to allow them to base their379

decisions on the outcome of random events that create uncertainty to the op-380

ponent about individual strategic choices maximising their payoffs. Hence, both381

Defender and Attacker deploy randomised (i.e. mixed) strategies. The mixed382

strategy ρ of the Defender is a probability distribution over the different routes383

(i.e. pure strategies) from C to Rqs, where ρ(rj) is the probability of delivering384

a Reply via rj under mixed strategy ρ. We refer to a mixed strategy of the385

Defender as a Randomised Delivery Plan (RDP). For the finite nonempty set386

[R], let Π[R] represent the set of all probability distributions over it, i.e.387

Π[R] := {ρ ∈ R+R|
∑
rj∈[R]

ρ(rj) = 1}. (5)

Therefore a member of Π[R] is a mixed strategy of the Defender.388

Likewise, the Attacker’s mixed strategy is a probability distribution over the389

different available malware. This is denoted by µ, where µ(ml) is the probability390

of choosing ml under mixed strategy µ. We refer to a mixed strategy of the391

Attacker as the Malware Plan (MP). Similarly with (5), we express by Π[M ] the392

set of all probability distributions over the set of all Attacker’s pure strategies393

given by [M ]. Thus, a member of Π[M ] is as a mixed strategy of the Attacker. From394

the above, the set of mixed strategy profiles of MDG is the Cartesian product of395

the individual mixed strategy sets, Π[R] ×Π[M ].396

Definition 1. The support of RDP ρ is the set of routes {rj |ρ(rj) > 0}, and it397

is denoted by supp(ρ).398

Definition 2. The support of MP µ is the set of malware {ml|µ(ml) > 0}, and399

it is denoted by supp(µ).400
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The above definitions state that the subset of routes (resp. malware) that401

are assigned positive probability by the mixed strategy ρ (resp. µ) is called the402

support of ρ (resp. µ). Note that a pure strategy is a special case of a mixed403

strategy, in which the support is a single action.404

Now that we have defined the mixed strategies of the players, we can define405

MDG as the finite strategic game Γ = 〈(Defender, Attacker), Π[R]×Π[M ], (Ud, Ua)〉.406

For a given mixed strategy profile (ρ,µ) ∈ Π[R]×Π[M ], we denote by Ud(ρ,µ), and407

Ua(ρ,µ) the expected payoff values of the Defender and Attacker, where the ex-408

pectation is due to the independent randomisations according to mixed strategies409

ρ, and µ.410

Formally411

Ud(ρ,µ) :=
∑
rj∈[R]

∑
ml∈[M ]

Ud(rj ,ml)ρ(rj)µ(ml). (6)

and similarly412

Ua(ρ,µ) :=
∑
rj∈[R]

∑
ml∈[M ]

Ua(rj ,ml)ρ(rj)µ(ml). (7)

By using the preference relation we can say that, for an Attacker’s mixed413

strategy µ, the Defender prefers to follow the RDP ρ as opposed to ρ′ (i.e. ρ %414

ρ′), if and only if Ud(ρ,µ) ≥ Ud(ρ′,µ).415

Definition 3. The Defender’s (resp. Attacker’s) best response to the mixed strat-416

egy µ (resp. ρ) of the Attacker (resp. Defender) is a RDP ρBR ∈ Π[R] (resp. µBR ∈417

Π[M ]) such that Ud(ρ
BR,µ) ≥ Ud(ρ,µ), ∀ ρ ∈ Π[R] (resp. Ua(ρ,µ

BR) ≥ Ud(ρ,µ), ∀ µ ∈418

Π[M ]).419

It is noteworthy to mention that the game theoretic solutions that we will420

propose, in the next section, involve randomisation. For instance, in a mixed equi-421

librium, each player’s randomisation leaves the other indifferent across her ran-422

domisation support. These choices can be deliberately randomised or be taken by423

software agents that run in mobile devices (i.e. cluster-heads or adversaries). How-424

ever these are not the only equilibria interpretations. For instance, the probabil-425

ities over the pure actions (i.e. route or malware pure selections) can represent426

(i) time averages of an “adaptive” player, (ii) a vector of fractions of a “popula-427

tion”, where each player type adopts pure strategies and, (iii) a “belief” vector428

that each player has about the other regarding their behaviour.429

4. Game solutions430

Now that we have defined MDG along with its components, in this section we431

concentrate in deriving optimal strategies for the Defender. First, we investigate432
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the problem of determining best RDPs and MPs (i.e. mixed strategies), for the433

Defender and the Attacker respectively, when both parties are rational decision-434

makers and they play simultaneously. Note that a game solution is a prediction435

of how rational players may take decisions.436

As we have not explicitly defined the strategic type of Attacker, we consider437

different types of solutions based on various Attacker behaviours. This analysis438

will allow us to draw robust conclusions regarding the overall optimal Defender439

strategy, which will minimise expected damages regardless of the Attacker type.440

4.1. Nash mixed strategies441

The most commonly used solution concept in game theory is that of Nash442

Equilibrium (NE). This concept captures a steady state of the play of the MDG443

in which Defender and Attacker hold the correct expectation about the other444

players’ behaviour and they act rationally. In other words, an NE dictates optimal445

responses to each other’s actions, keeping the others’ strategies fixed, i.e. strategy446

profiles that are resistant against unilateral deviations of players.447

Definition 4. In any Malware Detection Game (MDG), a mixed strategy profile448

(ρNE,µNE) of Γ is a mixed NE if and only if449

1. ρNE % ρ, ∀ρ ∈ Π[R], when the Attacker chooses µNE, i.e.450

Ud(ρ
NE,µNE) ≥∀ρ∈Π[R]

Ud(ρ,µ
NE); (8)

2. µNE % µ, ∀µ ∈ Π[M ], when the Defender chooses ρNE, i.e.451

Ua(ρ
NE,µNE) ≥∀µ∈Π[M ]

Ua(ρ
NE,µ). (9)

Definition 5. The Nash Delivery Plan (NDP), denoted by ρNE, is the probability452

distribution over the different routes, as determined by the NE of the MDG.453

For instance, a NDP (0.7, 0.3) dictates that 70% of the Replys will be sent454

over r1, and 30% over r2. Note that this distribution does not determine which455

Reply is sent over which route, as this decision is probabilistic.456

4.2. Maximin strategies457

We say that the Defender maximinimizes if she chooses an RDP that is best458

for her on the assumption that whatever she does, the Attacker will choose an459

MP to cause the highest possible damage to her.460

Definition 6. A Randomised Delivery Plan ρ† ∈ Π[R] is a maximin strategy of461

the Defender, if and only if462

min
µ∈Π[M ]

Ud(ρ
†,µ) ≥ min

µ∈Π[M ]

Ud(ρ,µ), ∀ρ ∈ Π[R]. (10)
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Table 2: A toy game example

m m′

r -3,1 -1,0

r′ -4,0 -2,1

A maximinimiser for the Defender is an RDP that maximises the payoff that463

the Defender can guarantee. In other words, ρ† guarantees (i.e. “secures”) the464

Defender at least her maximin payoff regardless of µ, as ρ† solves the problem465

maxρ minµ Ud(ρ,µ). That is why ρ† is also called security strategy.466

Definition 7. A Malware Plan µ† ∈ Π[M ] is a maximin strategy of the At-467

tacker, if and only if468

min
ρ∈Π[R]

Ua(ρ,µ
†) ≥ min

ρ∈Π[R]

Ua(ρ,µ), ∀µ ∈ Π[M ]. (11)

4.3. Stackelberg mixed strategies469

A two-player Stackelberg game involves one player (leader) to commit to a470

strategy before the other player (follower) moves. In a Stackelberg model the471

commitment of the leader is absolute, that is the leader cannot back-track on her472

commitment. On the other hand, the follower sees the strategy that the leader473

committed to, before she chooses a strategy.474

In an Stackelberg MDG, the Attacker conducts surveillance before she attacks475

and therefore she is aware of the Defender’s RDP. For completeness, we consider476

that this best-response is expressed also in mixed strategies.477

In general, Stackelberg and Nash games do not have the same equilibria. For478

instance, let us consider the normal-form MDG in Table 2, where the Defender has479

only two routes (r, r′) available and the Attacker can choose between two malware480

types (m,m′). We see that if this is a Nash game, r is a strictly dominant strategy481

for the Defender, as it gives her a higher payoff value than r′. As we have assumed482

that this is a complete information game, the Attacker knows that r is preferable483

for the Defender and she chooses m, which rewards her with 1 as opposed to484

m′, which gives payoff value 0. Therefore the NE of the game (in pure strategies)485

is (r,m).486

If we now consider this game as Stackelberg, the Defender (leader) can commit487

to a strategy before the Attacker (follower) chooses her strategy. If the Defender488

commits to r then the Attacker will play m, but if the Defender commits to r′489

then the Attacker will choose m′. The second pure strategy profile, i.e. (r′,m′)490

gives higher payoff to the Defender (-2 as opposed to (r,m), which gives -3) and491

therefore the Defender is better-off in the Stackelberg game compared to the Nash492

game, where her payoff equals -3 < -2.493
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Definition 8. A Reply Delivery Plan (RDP) is optimal if it maximises the De-494

fender’s payoff given that the Attacker will always play a best-response strategy495

with tie-breaking in favour of the Defender.496

Definition 9. A Malware Plan is a best response if it maximises the Attacker’s497

payoff, taking the Defender’s Reply Delivery Plan as given.498

A commonly used notion of a solution in Stackelberg games is the Strong499

Stackelberg Equilibrium (SSE), defined in MDG as follows.500

Definition 10. At the Strong Stackelberg Equilibrium of the MDG:501

1. for any ρ ∈ ∆[R], the Attacker plays a best-response µBR(ρ) ∈ ∆[M ] that502

is,503

Ua(ρ,µ
BR(ρ))≥Ua(ρ,µ(ρ)), ∀µ(ρ)6=µBR(ρ); (12)

2. for any ρ ∈ ∆[R], the Attacker breaks ties in favour of the Defender, that504

is, when there are multiple best responses to ρ, the Attacker plays the best505

response µSSE(ρ) ∈ ∆[M ] that maximises the Defender’s payoff:506

Ud(ρ,µ
SSE(ρ))≥Ud(ρ,µBR(ρ)),

∀µBR best response to ρ;
(13)

3. the Defender plays a best-response ρSSE ∈ ∆[R], which maximises her payoff507

given that the Attacker’s strategies are given by the first two conditions508

(i.e. the Attacker always plays best response with tie-breaking in favour of509

the Defender [38],[45]):510

Ud(ρ
SSE,µSSE(ρSSE))≥Ud(ρ, µSSE(ρ)), ∀ ρ6=ρSSE. (14)

5. Optimality analysis511

For the purpose of analysis, we consider complete information Nash MDGs,512

according to which both players know the game matrix, which contains the util-513

ities of both players for each pure strategy profile. The utility function of the514

Defender is determined by the probability of failing to detect a route and the515

overall performance cost, which is imposed on the devices of the j-th route when516

undertaking malware detection. We denote by c(si) the performance cost imposed517

on each si ∈ Sj and therefore the overall performance cost over a route rj equals518 ∑
si∈Sj c(si).519

We consider two different MDGs; (i) a zero sum MDG, where the Attacker’s520

utility is the opposite of the Defender’s utility and (ii) a non-zero sum MDG,521

where the Attacker’s utility is a strictly positive scaling of the Defender’s utility.522
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The rationale behind the zero sum game is that when there are clear winners523

(e.g. the Attacker) and losers (e.g. the Defender), and the Defender is uncertain524

about the Attacker type, she considers the worst case scenario, which can be525

formulated by a zero sum game where the Attacker can cause her maximum526

damage. While in most security situations the interests of the players are neither527

in strong conflict nor in complete identity, the zero sum game provides important528

insights into the notion of “optimal play”, which is closely related to the minimax529

theorem [46].530

In the zero sum MDG, Γ0 = 〈{d, a}, [R] × [M ], {Ud,−Ud}〉 (for clarity d has531

been used for the Defender and a for the Attacker), the Attacker’s gain is equal to532

the Defender’s security loss, and vice versa. We define the utility of the Defender533

in Γ0 as534

UΓ0
d (rj ,ml) := −wH p(rj ,ml)H(ml)− wC

∑
si∈Sj

c(si). (15)

The first term of (15) is the expected security loss of the Defender inflicted by the535

Attacker when attempting to infect Rqs with ml, while the second term expresses536

the aggregated message inspection cost imposed on all devices of rj , irrespective537

of the attacking strategy. Note that wH , wC ∈ [0, 1] are importance weights, which538

can facilitate the Defender with setting her preferences in terms of security loss,539

and computational detection cost, accordingly.540

By setting S(rj ,ml) = wH p(rj ,ml)H(ml), and C(rj) = wC
∑

si∈Sj c(si), we541

have that542

UΓ0
d (rj ,ml) := −S(rj ,ml)− C(rj). (16)

For a mixed profile (ρ,µ), the utility of the Defender equals543

UΓ0

d (ρ,µ)
(6)
=

∑
rj∈[R]

∑
ml∈[M ]

UΓ0

d (rj ,ml)ρ(rj)µ(ml)

(16)
=

∑
rj∈[R]

∑
ml∈[M ]

[−S(rj ,ml)− C(rj)]ρ(rj)µ(ml)

= −
∑

rj∈[R]

∑
ml∈[M ]

S(rj ,ml)ρ(rj)µ(ml)

−
∑

rj∈[R]

C(rj)ρ(rj).

(17)

As Γ0 is a zero sum game, the Attacker’s utility is given by UΓ0
a (ρ,µ) =544

−UΓ0
d (ρ,µ). Since the Defender’s equilibrium strategies maximise her utility,545

given that the Attacker maximises her own utility, we will refer to them as optimal546

strategies.547

As Γ0 is a two-person zero sum game with finite number of actions for both548
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players, according to Nash [47], it admits at least a NE in mixed strategies, and549

saddle-points correspond to Nash equilibria as discussed in [15] (p. 42). The fol-550

lowing result from [48], establishes the existence of a saddle (equilibrium) solution551

in the games we examine and summarizes their properties.552

Definition 11 (Saddle point of the MDG). The Γ0 Malware Detection Game553

(MDG) admits a saddle point in mixed strategies, (ρNE
Γ0
,µNE

Γ0
), with the property554

that555

• ρNE
Γ0

= arg maxρ∈∆[R]
minµ∈∆[M ]

UΓ0
d (ρ,µ), ∀µ, and556

• µNE
Γ0

= arg maxµ∈∆[M ]
minρ∈∆[R]

UΓ0
a (ρ,µ), ∀ρ.557

Then, due to the zero sum nature of the game, the minimax theorem [46] holds,558

i.e. maxρ∈∆[R]
minµ∈∆[M ]

UΓ0
d (ρ,µ) = minµ∈∆[M ]

maxρ∈∆[R]
UΓ0
d (ρ,µ).559

The pair of saddle point strategies (ρNE
Γ0
,µNE

Γ0
) are at the same time security560

strategies for the players, i.e. they ensure a minimum performance regardless of561

the actions of the other. Furthermore, if the game admits multiple saddle points562

(and strategies), they have the ordered interchangeability property, i.e. the player563

achieves the same performance level independent from the other player’s choice564

of saddle point strategy.565

The minimax theorem [46] states that for zero sum games, NE and minimax566

solutions coincide. Therefore, ρNE
Γ0

= arg minρ∈∆[R]
maxµ∈∆[M ]

UΓ0
a (ρ,µ). This567

means that regardless of the strategy the Attacker chooses, the Nash Delivery568

Plan (NDP) is the Defender’s security strategy that guarantees a minimum per-569

formance.570

We can convert Γ0 into a Linear Programming (LP) problem and make use of571

some of the powerful algorithms available for LP to derive the equilibrium. For a572

given mixed strategy ρ of the Defender, we assume that the Attacker can cause573

maximum damage to Rqs by injecting a message m̂ into the cluster network.574

Formally, the Defender seeks to solve the following LP:575

max
ρ∈∆[R]

min
µ∈∆[M]

UΓ0

d (ρ, m̂ )

subject to



UΓ0

d (ρ,m1)−minµ∈∆[M]
UΓ0

d (ρ, m̂)e ≥ 0
...

UΓ0

d (ρ,mM )−minµ∈∆[M]
UΓ0

d (ρ, m̂)e ≥ 0

ρe = 1

ρ ≥ 0.

(18)

In this problem, e is a vector of ones of size M .576

Lemma 1. A mixed strategy profile (ρNE,µNE) ∈ Π[R] ×Π[M ] in Γ0, is a mixed577

strategy NE if and only if578
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1. every route rj ∈ supp(ρNE) selection is a best response to µNE and,579

2. every malware ml ∈ supp(µNE) selection is a best response to ρNE.580

Proof. First, notice that Ud, as defined in (15), is a linear function in ρ(rj) that581

is, for any two RDPs ρ1 and ρ2 and any number θ ∈ [0, 1] we have Ud(θ ρ1 + (1−582

θ)µ) = θ Ud(ρ1) + (1 − θ)Ud(ρ2). Then, for the sake of contradiction, assume583

there exists a route r′j ∈ supp(ρNE) selection that is not a best response to584

µNE. Due to the linearity of Ud in ρNE(rj), the Defender can increase her payoff585

by transferring probability from ρ(r′j) to a route selection that is a best response586

to µNE, creating a new mixed strategy ρ∗ % ρNE. However, this contradicts the587

assumption that ρNE is the strategy of the Defender at the NE, as the Defender588

prefers to deviate from ρNE to gain a higher payoff, by playing ρ∗. The second589

part of the lemma can be proven in the same way.590

Let us now assume a non-zero sum MDG, denoted by Γ, with the same591

strategy spaces with Γ0, in which the Defender’s utility is the same as in Γ0,592

i.e. UΓ
d (ρ,µ) = UΓ0

d (ρ,µ) = −S(rj ,ml) − C(rj). On the other hand, the At-593

tacker’s utility is (strictly positive) scaling of the security loss S(rj ,ml) of the594

Defender upon a successful attack. This is to say that the performance cost of595

the Defender is only important to her as the Attacker is only after compromising596

Rqs. Therefore, given a pure strategy profile (rj ,ml), the utility of the Attacker,597

in Γ, is defined as:598

UΓ
a (rj ,ml) := ΞS(rj ,ml), for Ξ > 0. (19)

For a mixed profile (ρ,µ) the utility of the Attacker is given by599

UΓ
a (ρ,µ)

(7)
=
∑
rj∈[R]

∑
ml∈[M ]

UΓ
a (rj ,ml)ρ(rj)µ(ml)

(19)
=

∑
rj∈[R]

∑
ml∈[M ]

ΞS(rj ,ml)ρ(rj)µ(ml).
(20)

Hence, due to UΓ
d (ρ,µ) = UΓ0

d (ρ,µ), from (17) and (20) we have that600

UΓ
d (ρ,µ) = − 1

Ξ
UΓ
a (ρ,µ)−

∑
rj∈[R]

C(rj)ρ(rj)

= − 1

Ξ
UΓ
a (ρ,µ)− k(ρ),

(21)

where 1
Ξ > 0, and k(ρ) is an expression that does not depend on µ. That is, the601

best response of the Defender to any given malware plan, also yields the utility602

for the Defender at the worst case scenario.603
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Lemma 2. NE strategies of the Defender in Γ are equivalent of the NE strategies604

of the Defender in Γ0. Formally, ΩNE
Γ = ΩNE

Γ0
.605

Proof. By definition, a strategy profile (ρNE,µNE) is NE of Γ if and only if:

S(ρNE,µNE) + k(ρNE) ≤ S(ρ,µNE) + k(ρ),∀ρ ∈ ∆[R], (22a)

Ξ · S(ρNE,µNE) ≥ Ξ · S(ρNE,µ),∀µ ∈ ∆[M ]. (22b)

Here is the observation:606

Ξ · S(ρNE,µNE) ≥ Ξ · S(ρNE,µ),∀µ ∈ ∆[M ] ⇐⇒
Ξ · [S(ρNE,µNE) + k(ρNE)] ≥

Ξ · [S(ρNE,µ) + k(ρNE)], ∀µ ∈ ∆[M ].

(23)

Since Ξ > 0, the latter condition is satisfied if and only if:607

S(ρNE,µNE) + k(ρNE) ≥ S(ρNE,µ) + k(ρNE),∀µ ∈ ∆[M ]. (24)

In short, (ρNE,µNE) is a NE of Γ, if and only if it satisfies:

S(ρNE,µNE)+k(ρNE)≤S(ρ,µNE)+k(ρ),∀ρ∈∆[R], (25a)

S(ρNE,µNE)+k(ρNE)≥S(ρNE,µ)+k(ρNE),∀µ∈∆[M ]. (25b)

But these are exactly the conditions describing a NE of Γ0. Therefore ΩNE
Γ =608

ΩNE
Γ0

.609

Lemma 3. In Γ, the set of NE and Maximin strategies of the Defender are610

equivalent, i.e. ΩNE
Γ = Ωmaximin

Γ .611

Proof. (⇒) Since Γ0 is a two person zero-sum game, we know that the set of NE612

and Maximin strategies of the Defender are the same, i.e. ΩNE
Γ0

= Ωmaximin
Γ0

. Let613

(ρNE,µNE) ∈ ΩNE
Γ then based on Lemma 2 we have that (ρNE,µNE) ∈ ΩNE

Γ0
. Since614

Γ0 is zero-sum, ρNE ∈ Ωmaximin
Γ0

. But the strategy spaces and the utility of the De-615

fender are the same in both Γ and Γ0. Hence the conditions for a mixed strategy to616

be a Defender’s Maximin is the same in both games. Therefore, ρNE ∈ Ωmaximin
Γ ,617

i.e. ΩNE
Γ ⊆ Ωmaximin

Γ .618

(⇐) The argument goes in the other direction as well: consider ρNE ∈ Ωmaximin
Γ . Since619

the utility of the Defender and the strategy spaces are the same across the two620

games, for the same strategy ρNE, we have that ρNE ∈ Ωmaximin
Γ0

. Since Γ0 is two-621

player zero-sum, there exists µNE such that (ρNE,µNE) ∈ ΩNE
Γ0

. From Lemma 2,622

this means (ρNE,µNE)Γ ∈ ΩNE. Hence, Maximin strategies of the Defender are623

also part of her NE strategies in Γ, i.e. Ωmaximin
Γ ⊆ ΩNE

Γ . Putting the two together624

ΩNE
Γ = Ωmaximin

Γ .625

21



This lemma establishes that the Defender can randomise according to her NE626

and, in expectation, be guaranteed at least the expected utility prescribed by627

the NE, irrespective of the mixed strategy of the Attacker. To put it differently,628

the Defender can play her pessimistic maximin strategy, but she does not lose629

anything in expectation by not playing a NE strategy. It is worth stressing that630

this property only holds for the NE strategy of the Defender and not of the631

Attacker.632

Lemma 4. In Γ, the set of Maximin and SSE strategies of the Defender are the633

same, i.e. Ωmaximin
Γ = ΩSSE

Γ .634

Proof. (⇒) Let ρNE ∈ ΩSSE
Γ be a SSE strategy of the Defender. Then by defini-635

tion, ρNE is (i) an optimal strategy of the Defender given that (ii) the Attacker636

is best-responding to it but by (iii) breaking ties in favour of the Defender. That637

is:638

(i) ρNE ∈ arg maxρ∈∆[R]
Ud(ρ,µ

BR(ρ)) where;639

(ii) for any ρ ∈ ∆[R], µ
BR(ρ) ∈ arg maxµ∈∆[M ]

Ua(ρ,µ) and;640

(iii) for any ρ ∈ ∆[R]:641

µBR(ρ) ∈ arg max
µ∈arg maxµ∈∆[M]

Ua(ρ,µ)
Ud(ρ,µ). (26)

Let us examine condition (ii): for any ρ ∈ ∆[R]:642

µBR(ρ) ∈ arg max
µ∈∆[M]

Ξ · S(ρ,µ) ⇐⇒

µBR(ρ) ∈ arg max
µ∈∆[M]

Ξ · [S(ρ,µ) + k(ρ)]

µBR(ρ) ∈ arg max
µ∈∆[M]

S(ρ,µ) + k(ρ).

(27)

In short, condition (ii) is equivalent to:

(iv) For any ρ ∈ ∆[R],µ
BR(ρ) ∈ arg min

µ∈∆[M ]

Ud(ρ,µ).

This makes condition (iii) irrelevant. But conditions (i) and (iv) exactly describe643

a Maximin strategy of the Defender. Therefore we have proved that ΩSSE
Γ ⊆644

Ωmaximin
Γ . (⇐) The argument can be established identically in reverse direction,645

starting from a Maximin strategy of the Defender. So given conditions (i) and646

(iv) we must prove that conditions (ii) and (iii) are true. Let ρNE ∈ Ωmaximin
Γ be647

a Maximin strategy of the Defender. Then by definition, ρNE is (i) an optimal648

strategy of the Defender given that (iv) the Attacker is minimising Defender’s649

utility. We see that condition (ii) is true if and only if condition (iv) is true. Since650

the Maximin strategy ρNE makes condition (iv) true, it will also make condition651
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(ii). To prove that ρNE is an SSE, we also need to prove condition (iii). Let us652

assume that the condition is not true. This means that there is a best-response653

of the Attacker that does not break ties in favour of the Defender. Formally,654

µBR(ρ)/∈arg max
µ∈argmaxµUa(ρ,µ)

Ud(ρ,µ)⇐⇒

µBR(ρ)/∈arg max
µ∈argmaxµUa(ρ,µ)

{
−S(ρ,µ)−k(ρ)

}
⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

{
S(ρ,µ)+k(ρ)

}
⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

S(ρ,µ)⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

Ua(ρ,µ),

(28)

which is leads to a contradiction. Therefore condition (3) holds, and putting655

together all three conditions (1), (2), and (3), we have that ρNE, which is a656

Maximin strategy of the Defender it is also an SSE strategy, i.e. Ωmaximin
Γ ⊆657

ΩSSE
Γ . Putting the two proofs together we have that Ωmaximin

Γ = ΩSSE
Γ .658

Theorem 1. In Γ, the set of NE, Maximin and SSE strategies of the Defender659

are the same, i.e. ΩNE
Γ = Ωmaximin

Γ = ΩSSE
Γ . Besides, all NE are interchangeable,660

in Γ, and all yield the same utility for the defender.661

Proof. Trivially, from Lemmas 3 and 4 we have that ΩNE
Γ = Ωmaximin

Γ = ΩSSE
Γ . Since662

Γ0 is a two person zero-sum game, we know that all NE are interchangeable663

[48]. From Lemma 2 the NE of Γ0 are the NE of Γ and vice-versa. We also see664

that the utility of the Defender is the same across Γ and Γ0. Therefore the utility665

of the Defender in all NE of our original game is the same, which also implies666

that all NE of our original game are interchangeable.667

The above lemma establishes that the Defender, regardless of whether the At-668

tacker conducts surveillance, she plays optimally when she randomises according669

to her NE strategy.670

Theorem 2. Regardless of the type of malware detection game played, i.e.671

1. a zero sum or a non-zero sum malware detection game,672

2. a Nash or a Stackelberg malware detection game,673

the Defender plays optimally by choosing any strategy ρ ∈ ΩNE
Γ0

.674

Proof. By combining 2 and 1, we have that ΩNE
Γ0

= ΩNE
Γ = Ωmaximin

Γ = ΩSSE
Γ ,675

which proves the theorem.676
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The above theorem demonstrates that it is computationally efficient for the677

Defender to derive her optimal strategy by solving the LP represented by (18). It678

is worth noting that a similar result but for different problem has been published679

in [37].680

6. iRouting681

In this section, we present the iRouting protocol, which stands for intelligent682

Routing and whose routing decisions are made according to the Nash Delivery683

Plan (NDP). iRouting has been designed based on the mathematical findings684

of the MDG analysis, presented in previous sections, and its main goal is to685

maximise the utility of the Defender in the presence of a “rational” Attacker.686

Within the realm of Mobile Edge Computing (MEC), devices of the cluster687

request services from the cluster-head (denoted by C) imposing the need for estab-688

lishing an end-to-end path between the requestor (i.e. destination device denoted689

by Rqs) and C. Each time data must be delivered to Rqs, C has to compute the690

NDP by solving an MDG for this destination. To do this, following the route691

discovery, C uses its latest information about the malware detection capabilities692

of all possible routes to Rqs, along with their inspection costs (i.e. malware detec-693

tion costs to perform, for example, intrusion classification). Data is then relayed694

and collaboratively inspected by the devices on its way to Rqs. Overall, the ob-695

jective of C (i.e. the Defender) is to select the route that can correctly detect696

and filter out malicious data before they infect Rqs by making sure that it is not697

crafted with malware. We assume that each device must use its data inspection698

capabilities at the maximum possible degree..699

iRouting has characteristics of reactive route selection protocols, meaning that700

it takes action and starts computing routing paths that have not been previously701

computed when a request for data delivery to Rqs is issued. iRouting requires to702

obtain information about the malware inspection capabilities and the associated703

computational cost of devices, in routes from C to Rqs.704

iRouting consists of three main phases, which we describe in more detail705

in the remainder of this section. In the first phase of the protocol (described in706

Algorithm 1), C broadcasts a Route REQuest (RREQRqs) to discover routes towards707

Rqs. Each device that receives the RREQRqs), acts similarly by broadcasting it708

towards Rqs. After C sends a RREQRqs, it has to await for some timeout Treq,709

which is set equal to the Net Traversal Time (NetTT), as in AODV [7].710

The second phase of the protocol starts when the receiving device is Rqs. Then,711

this device does not forward the request any further. Instead, it prepares a Route712

REPly (RREPRqs), and sends it back towards C by using the reverse route, which is713

built during the delivery of RREQRqs, as described by Algorithm 2. Each RREPRqs714

carries information about: (i) the set Sj of devices that comprise a route; (ii)715
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Algorithm 1 Seeking routes to destination Rqs.

1: procedure iRouting Request(s, Rqs,Sj)
2: s seeks routes to Rqs by broadcasting RREQRqs;
3: if a device si receives RREQRqs then
4: Sj ∪ {si};
5: if si 6= Rqs then
6: si executes iRouting Request(si, Rqs,Sj);
7: else
8: L← |Sj |, n← 0, Tj ← ∅, Cj ← ∅;
9: iRouting Response(n,L, Tj , Cj ,Sj , Rqs);

10: break;
11: end if
12: end if
13: end procedure

Algorithm 2 Responding to a cluster-head with a route to Rqs.

1: procedure iRouting Response(n,L, Tj , Cj ,Sj , s)
2: s sends RREPRqs to the (L− n)-th device of Sj , let it be si;
3: if si 6= C then
4: Tj ∪ p(si), Cj ∪ c(si), n← n+ 1;
5: iRouting Response(n,L, Tj , Cj ,Sj , si);
6: else
7: Execute iRouting(Rqs, D,Sj, Tj, Cj);
8: break;
9: end if

10: end procedure

the set Tj of vectors of “failing-to-detect” probabilities, for different malware,716

of devices in rj ; and (iii) the set Cj of computational malware inspection costs717

c(si) of devices in rj . These values are updated while the RREPRqs is traveling718

back to C. When each device (e.g. si) that is involved in the route response719

phase, receives the RREPRqs, it updates Tj and Cj . Within the time period Treq, C720

aggregates RREPRqs messages and updates its routing table with information that721

can be used to derive the optimal routing strategy, as dictated by Theorem 2.722

In the third phase of the protocol, described in Algorithm 3, C uses its routing723

table to solve the MDG by computing the Nash Delivery Plan, denoted by ρNE,724

which has a lifetime T . Then, C probabilistically selects a route according to ρNE
725

to deliver the requested data to Rqs. The chosen route is denoted by r∗. Note726

that for the same Rqs and before T expires, C uses the same ρNE to derive r∗,727

upon a new Request.728
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Algorithm 3 Delivering data to Rqs.

1: procedure iRouting(Rqs, D,Sj, Tj, Cj)
2: C derives the Nash Delivery Plan, ρNE using Sj , Tj , Cj ;
3: C chooses r∗ probabilistically as dictated by ρNE;
4: C delivers D to Rqs over r∗;
5: Each device si ∈ r∗ performs data inspection;
6: if D found to carry malware then
7: si drops D;
8: si notifies C by sending a notification message along the reverse path;
9: C blacklists the device that sent, through the cloud, D consisting of

malware;
10: else
11: si forwards D to Rqs;
12: end if
13: end procedure

Also, the third phase focuses on detecting malware injected along with the729

requested data (denoted by D) to prevent the infection of Rqs. While D is delivered730

to Rqs over r∗, the relay devices, on r∗, perform data inspection auditing D for731

malware. Upon successful detection, the device that detects the malware, first732

drops D, and then notifies C that D was crafted with malware. The notification733

message is sent along the reverse path. When receiving this, C blacklists the734

device that has originally sent D (this device is assumed that has hijacked the735

communication link between MEC server and the cluster-head). This can be seen736

as the first step towards mitigating the investigated attack model and anything737

beyond that is out of the scope of this paper.738

While each data D is collaboratively inspected by the devices on its way to Rqs,739

the derivation of the optimal routing strategy, i.e. the Nash Delivery Plan (NDP),740

is computed only by C through solving a Malware Detection Game (MDG) for741

this specific destination Rqs. Therefore, even if the other devices are aware of the742

existence of some infected data, it is only C that isolates the Attacker (i.e. data743

source) towards mitigating future malware infection risks.744

The communications complexity of the iRouting protocol measured in terms745

of number of messages exchanged in performing route discovery is O(2N), where746

N is the number of devices in the D2D network. As a reactive routing protocol,747

iRouting has higher storage complexity than conventional routing protocols, but748

it supports multiple-path routing and QoS routing making malware detection749

optimal, as shown in section 5. Finally, iRouting has a time complexity equal to750

O(2D), where D is the diameter of the D2D network.751
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Table 3: Simulation parameter values

Parameter Value

Number of nodes 20

Mobility model Linear Mobility

Mobility Speed 10 m/s

Mobility Update Interval 0.1 s

Packet size 512 bytes

Packet generation rate 2 packets/s

Simulation time 600 s

7. Simulations752

7.1. Network setup753

We have conducted a series of simulations to evaluate the performance of the754

optimal strategies in D2D networks. Devices have been randomly deployed inside755

a rectangular area of 1000m x 1000m. For each device, the transmission power756

is fixed, and the maximum transmission range is 200m, while two devices can757

directly communicate with each other only if they are in each others transmis-758

sion range. We have performed the simulations using the OMNeT++ network759

simulator and INET framework. We have simulated the IEEE 802.11 MAC layer760

protocol and devices send UDP traffic. In the simulations, the requestor of some761

data is chosen randomly, and the total number of devices of a cluster is set to be762

20. The total simulation time varies (10, 20, 40, 60, 120 seconds) to confirm the763

consistency of results. Table 3 summarizes the simulation parameters.764

7.2. Security controls and malware765

Simulations consider one adversary who is injecting a sequence of consecutive766

malicious replies with the aim to infect Rqs. We assume that the Attacker chooses767

to inject one of [M ] = {Keylogger, SMS spam, Rootkit iSAM, Spyware, iKee-B,768

Premium-Rate calls} malware types (i.e. pure strategies of the Attacker). We769

have also assumed the anti-malware controls, SMS Profiler, iDMA, iTL, and770

Touchstroke, along with their detection rates, as published in [49]. Each mobile771

device is equipped with at least one and up to three anti-malware controls.772

7.3. Attackers773

We have simulated 3 different Attacker types; namely Uniform, Weighted,774

and Nash Attacker:775

• Uniform: the Attacker chooses each malware type from the set with equal776

probability. For example for the set we have used here, there is a probability777

1
6 = 0.1667 the Attacker to choose any of the malware types of [M ];778
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• Weighted : the Attacker chooses a malware type with probability derived779

by the following algorithm:780

1. find the average utility value of the Attacker for each column of the781

game matrix;782

2. add the average utility values of the Attacker for all columns to get783

the combined sum;784

3. for each malware type, derive the probability of a malware type to be785

chosen by dividing its average utility value, found in step 1, by the786

sum derived in step 2.787

• Nash: the Attacker plays according to her Nash strategy µNE .788

Per Reply, the simulator chooses an attack sample from the attack probability789

distribution which is determined by the Attacker profile.790

We have introduced different probability distributions for each Attacker type,791

only for testing purposes. Nevertheless, iRouting is optimal regardless of the792

probability distribution of a malware type to be chosen by the Attacker; a petition793

that is formally consolidated by the mathematical results presented in sections 4794

and 5 as well as the simulation results uncovered in this section.795

7.4. Experiments796

We have considered 5 Cases each referring to different simulation times: 10,797

20, 40, 60, and 120 mins. For each Case we have simulated 1,000 replies, which798

are UDP messages of length 512 bytes with delay limit 100 seconds, for a fixed799

network topology. Yet we refer to the run of the code for the pair 〈Case,#replies〉800

by the term Experiment. We have repeated each Experiment for 10 independent801

network topologies to get a clear idea of the results’ trend. We do that for all 5802

Cases and each type of Attacker profile. Thus we simulate, in total: 5 Cases ×803

1, 000 replies× 10 network topologies = 50, 000 replies.804

7.5. Comparisons805

We compare iRouting against AODV, DSR, and custom-made routing proto-806

col called Proportional Routing (PR), for different Attacker types.807

PR is computed as follows. First, by using the game matrix, the Defender808

computes the average utility value for each row, let it be809

Ûd(rj) =

∑M
ml=1 Ud(rj ,ml)

M
, ∀ rj ∈ [R]. (29)

Then, the probability of route rj to be chosen equals:810

1− Ûd(rj)∑R
r=1 Ûd(r)

. (30)
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According to the results illustrated in Figures 2 - 4, iRouting consistently out-811

performs the rest of the protocols, in terms of both Defender’s expected utility and812

average detection rate, for all different simulation times and Attacker types. The813

results show that iRouting achieves its highest average malware detection rate814

(∼65%) against a Uniform Attacker (non-strategic Attacker), and its worst rate815

against a Weighted Attacker. In the case of a Nash Attacker, iRouting has almost816

22% higher detection rate than PR, 6% than DSR, while it is twice more efficient817

(i.e. ∼11%) than AODV. For a Weighted Attacker, PR behaves differently as it818

achieves approximately 6% lower average detection rate than iRouting, in con-819

trast to DSR and AODV, which perform worse, as opposed to the Nash Attacker820

case, since the difference of their average detection rate compared to iRouting821

becomes double (i.e.∼12% for DSR and 24% for AODV). Finally, for a Uniform822

Attacker, the difference, in terms of detection rate, compared to iRouting, is823

almost the same for both DSR and PR, which is approximately equivalent to824

8%. AODV still has the worst average detection rate among all protocols by825

having 24% worse rate than iRouting.826
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Figure 2: Malware detection rate in presence of a Nash attacker.
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Figure 3: Malware detection rate in presence of a Uniform attacker.
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Figure 4: Malware detection rate in presence of a Weighted attacker.

According to Figures 5 - 7, iRouting achieves the best performance in terms of827

average expected utility among all protocols. More specifically, iRouting improves828

the average expected utility, in the case of a Nash Attacker, by, in average, 49%,829

17%, and 7% compared to PR, AODV, and DSR, respectively. We notice that830

the Defender’s utility in iRouting is similar to the one achieved when DSR is831

used. The reason for this is that DSR improves computational cost as opposed832

to iRouting more than AODV and PR while exhibiting the best detection rate833

among AODV and PR. Average improvement values are slightly more pronounced834
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for a non-strategic Uniform Attacker; 16%, 68%, and 37%, as opposed to the835

same protocols. The situation is similar for a Weighted Attacker, in which case836

the corresponding improvement values are 18%, 53%, and 20%. We also notice837

that the behaviour of all protocols but iRouting is stochastic despite of iRouting838

having steadily the best performance.839
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Figure 5: Utility of the Defender in presence of a Nash attacker.
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Figure 6: Utility of the Defender in presence of a Uniform attacker.
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Figure 7: Utility of the Defender in presence of a Weighted attacker.

8. Conclusion840

In this paper, we have formally investigated how to select an end-to-end path841

to deliver data from a source to a destination in device-to-device networks under842

a game theoretic framework. We assume the presence of an external adversary843

who aims to infect “good” network devices with malware. First, a simple yet844

illuminating two-player security game, between the network (the Defender) and845

an adversary, is studied. To devise optimal routing strategies, optimality analysis846

has been undertaken for different types of games to prove, in theory, that there847

is a Nash equilibrium strategy that always makes the Defender better-off. The848

analysis has shown that the expected security damage that can be inflicted by849

the Attacker is bounded and limited when the proposed strategy is used by the850

Defender. Network simulation results have also illustrated, in practice, that the851

proposed strategy can effectively mitigate malware infection. In future work, we852

intend to investigate machine learning algorithms (e.g. boosting) to convert weak853

learners (e.g. devices with limited number of anti-malware controls) to strong854

ones.855
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