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ABSTRACT

Security concerns are a major deterrent in many applica-
tions wireless sensor networks are envisaged to support. To
date, various security mechanisms have been proposed for
these networks dealing with either Medium Access Con-
trol (MAC) layer or network layer security issues, or key
management problems. Security visualization is the latest
weapon that has been added in the arsenal of a security
officer who is tasked with detecting network anomalies by
analyzing large amounts of audit data. This paper proposes
a novel security visualization system for analyzing and de-
tecting complex patterns of sensor network attacks, called
SRNET. Both selective forwarding and jamming attacks are
identified through visualizing and analyzing network traffic
data on multiple coordinated views, namely the multidimen-
sional crossed view, the crossed view perspective, and the
track area view. Through simulations, we demonstrate that
SRNET is able to help detect and further identify the root
cause of the aforementioned sensor network attacks.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General
| Security and protection; H.5.2 [User Interfaces]: Graph-
ical user interfaces (GUI)—interaction techniques

General Terms

Security Visualization
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1. INTRODUCTION

A wireless sensor network (WSN) is a network of cheap
and simple processing devices (sensor nodes) that are spa-
tially distributed in an area of interest in order to coop-
eratively monitor physical or environmental conditions and
transmit the collected information to a remote server for
further processing. Most applications WSNs are envisaged
to support require the remote and unattended operation of
a large number of sensor nodes. The unattended nature of
the deployed WSNs and the limited resources of the wire-
less nodes raises immediate administration problems and ap-
points the security as an increasingly critical element in the
network design [1]. Currently, research on providing security
solutions for WSNs has primarily focused in three categories
[2]; key management, authentication and secure routing, as
well as in secure services such as secure localization, aggre-
gation and time synchronization.

All mentioned security protocols are based on particular
assumptions about the nature of the attacker. If the attacker
is ‘weak’ (i.e. a passive mote-class attacker), the protocol
will achieve its security goal. If the attacker is ‘strong’ (i.e.,
a laptop-class attacker), there is a non-negligible probability
that the adversary will break in, and will start running some
malicious code. Because of their resource constraints, sen-
sor nodes usually cannot deal with very strong adversaries.
So, what is needed is a second line of defense: an Intrusion
Detection System (IDS) that can detect a third party’s at-
tempts of exploiting possible insecurities, and as such, warn
for malicious attacks.

An effective IDS must be able to recognize familiar threats
as well as identify threats that have not been experienced
before. Automated systems are currently very effective in
the first of these two categories; that is, a well-designed au-
tomatic IDS can very quickly identify a network intrusion if
that intrusion has a previously seen pattern of data [3]. De-
spite the fast development of automated IDSs, the evolving
nature of the attacks as well as the scale and complexity of
the generated network traffic (also known as the “Big Data”
problem) put ever-increasing challenges to the interpreta-
tion and understanding of security-related information [4,
5]. Moreover, the state of the art in anomalous activity de-
tection, which is required for recognizing new threats, is very
unreliable in automated systems. These systems require vig-
ilant human oversight, but most importantly, they lack the



reasoning ability that is crucial for making decisions about
anomalous data that may or may not be a threat, with the
typical consequence of an extremely high false positive rate.

In order to meet the inherent analytical needs, the sci-
entific community turned to the Visual Analytics approach.
Visual Analytics can be described as “the science of ana-
lytical reasomning facilitated by interactive visual interfaces”
[6]. It is a tight integration of visual and automatic data
analysis methods for information exploration and scalable
decision support. Whenever automatic systems become in-
sufficient for recognizing malicious patterns, advanced visu-
alization and interaction techniques can be used as a bridge,
encouraging the expert user to explore the relevant data and
to take advantage of the human perception, intuition, and
background knowledge [7, 8]. This feature should be consid-
ered as the main benefit of visualization for network security.
Moreover, a visual-based approach to the anomaly detection
problem does not need a “normal” data set and mainly re-
lies on the superior visual processing capability of the human
brain to detect patterns and draw inference. Starting with
no prior knowledge of what shape or form the anomalies
take, researchers use visualization as a novel tool for discov-
ering the intrinsic properties of normal and abnormal data
[9, 10].

This paper contributes to the area of security visualization
for wireless sensor networks. We propose a robust Visual-
assisted Intrusion Detection System (VIDS) devised for the
process of detecting complex patterns of abnormal network
behavior in large-scale WSNs, called SRNET. SRNET is an
integrated system that tackles the sensor network anomaly
detection problem by using novel visual analytics technolo-
gies. To help address the security visualization challenges,
SRNET offers the following contributions;

e A multidimensional crossed view enhanced with a high-
light function that monitors the evolving status of two
classes of sensor network attacks, namely selective for-
warding attacks and jamming attacks.

e A crossed view perspective combined with a track view,
which is introduced so as to timely locate the source
of the correlated anomaly.

e A novel track area view that tracks the source and
the pattern of a potential jamming attack and which
enables attribution of the attacker.

The remainder of the paper is organized as follows. In
Section 2 we review visualization assisted approaches aimed
at detecting network attacks in WSNs. Section 3 introduces
the basic features and views of the SRNET visual analyt-
ics system. We present experimental results in Section 4.
Finally, Section 5 concludes the paper and discusses future
extensions.

2. RELATED WORK

Several security visualization systems have been proposed
in the literature to address the problem of visual-based ano-
maly detection in WSNs. Early in 2004, Wang and Bhar-
gava [11] proposed a security enhancing visualization mecha-
nism for WSNs, called MDS-VOW, which is capable of iden-
tifying the occurrence of a wormhole attack in stationary
wireless sensor networks. Using multi-dimensional scaling
(MDS) and a surface smoothing strategy, a virtual layout of
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the network is computed. The shape of the reconstructed
network is then analyzed. If any wormhole exists, the shape
of the network will bend and curve towards the wormhole,
otherwise the network will appear flat. MDS-VOW was eval-
uated for its wormhole detection accuracy through simula-
tions. While efficient, this approach has several deficiencies,
especially when applied to dynamic wireless environments
(the detection rate drops from over 95% to less than 70%
and the ratio of false positives rises from less than 10% to
over 80%).

Wang and Lu [12] extended the MDS-VOW concept propos-
ing an improved detection mechanism, called interactive vi-
sualization of wormholes (IVoW). IVoW mechanism efficiently
integrates automatic intrusion detection algorithms with vi-
sual representation and user interaction to support visual-
ization of several wormholes in large scale dynamic WSNs.
Simulation results showed that [VoW accelerates the detec-
tion process and improves the algorithm accuracy when com-
pared to the MDS-VOW approach.

Wang and Lu [13] proposed an effective approach for mon-
itoring and detecting Sybil attacks in large scale WSNs. This
approach uses multiple 2D and 3D views that allow the user
to observe the network topology information through multi-
ple aspects and reveal data correlations. Simulation studies
showed that the proposed mechanism can effectively identify
both direct and indirect Sybil attacks. One drawback of this
tool is that greater visualization effort is needed to come up
with a firm final resolution.

Recently, Lu et al. [14] developed an integrated approach
to detect Sybil attacks in mobile WSNs through visualizing
and analyzing multiple reordered topology patterns. Differ-
ent from the previous approach, the automatic reordering
and evaluation algorithms used here reveal the malicious
nodes in the network topology faster and more accurately.
The proposed approach also provides a time-series analy-
sis in order to identify attack durations. This analysis is
based on time histograms and an automatic time segmenta-
tion method. Overall, this approach was evaluated through
a series of real-life attack scenarios, and has shown success
at unveiling unknown Sybil attacks.

Abuaitah et al. [15], developed a security visualization
system, called SecVizer, capable of parsing any QualNet
generated traffic trace from both wired and wireless net-
works. SecVizer combines topology visualization with the
parallel coordinate plot technique in order to obtain a faster
and more effective detection of network vulnerabilities. By
exploring noticeable traffic patterns at both the network
topology window and the parallel plot window, the tool
has demonstrated its ability to detect various malicious net-
work activities, most notably Distributed Denial of Service
(DDoS) attacks. The tool, in its current status, is intuitive
enough to allow an analyst to process network events in real-
time, but further drill down depth is needed to come up with
a firm final resolution.

In the settings of WSNs, Shi et al. [16] proposed a novel
approach to sensor network anomaly detection and fault di-
agnosis through visualization. The SAVE system encom-
passes three distinct visualization components that interpret
the topological, correlational and dimensional sensor data
dynamics and their anomalies. SAVE was validated through
a case study deployment on the real-world large-scale WSN
system called GreenOrbs.

As it can be seen, the existing security visualization sys-
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Figure 1: The SRNET visual interface.

tems can only deal with a single type of attack instance.
Compared to the previous security methods, within SRNET,
we apply as well as develop novel views for visually detecting
a number of sensor network attacks in one single view.

3. THE SRNET SYSTEM

SRNET is a system that fully leverages the power of both
visualization and anomaly detection analytics to guide the
user to quickly and accurately detect complex patterns of
sensor network attacks. At its current state, SRNET detects
selective forwarding [17] and jamming attacks [18] against
the WSN through visualizing and analyzing network traf-
fic data on multiple coordinated views. Figure 1 shows the
whole picture of the provided visualizations of the SRNET
system. The main user interface is composed of the Ge-
ographical Topology View (lower right), the Crossed View
(upper left), the Track View (upper right) and the Track
Area View (lower left). In the following subsections, the
added value of each of these contributions is discussed in
detail.

3.1 The Geographical Topology View

The Geographical Topology View illustrates the physical
topology of the sensor nodes, which resembles a multi-cluster
tree structure similar to the one proposed by the IEEE
802.15.4 standard [19]; a dominant communication standard
developed to provide low-power and highly reliable wireless
connectivity among inexpensive, battery-powered devices.
Each node is illustrated with a circle. A different color dif-
ferentiates the role of each node, which in the case of cluster-
based WSNs, can either act as a coordinator (i.e. the prin-
cipal controller of a cluster) or as a device (i.e. a cluster
member with sensing and communicating capabilities). A
ring accompanying each node shows the node’s transmission
range, while the connection lines represent the parent-child
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relationships between the sensor nodes. While the network
under investigation comprises of 40 sensor networks orga-
nized into five clusters following the association procedure
of the 802.15.4 standard, the SRNET system can support
WSNs of arbitrary number of nodes and clusters.

3.2 The Crossed View

We devised the concept of the Crossed View in order to
provide a multidimensional, consolidated, and effective view
of the network status to the human behind the monitor. The
rationale behind the visualization of the crossed view is the
simplicity of the interpretation of the potential threads to
the network. The design behind the picture aims at illus-
trating the thread immediately, without entailing complex
actions or complicated human interaction. In order to over-
come scalability issues, a similar but more focused view is
also provided, which is triggered just with a simple click by
the administrator. This focused view is called Crossed Clu-
ster View and restricts the view to a simple cluster of the
sensor network keeping the provided properties and config-
uration intact. Figure 2 illustrates the crossed view under
normal operation. The whole view is divided into four quar-
ters. All information provided by this view is synchronized.
Each quarter endeavors to point a crucial feature of the net-
work. For example, the upper right quarter reorganizes the
network topology in a single view, the lower right quarter
reveals potential selective forwarding threads together with
analytics, the lower left quarter focuses on the jamming ef-
fects at each node, and the upper left quarter constitutes the
correlated thread analyzer providing a dynamic projection
of the state of the whole sensor network.

More specifically, the Upper Right Quarter constitutes the
control panel of the scheme. It includes all nodes drawn in
a square block shape using different colors to distinguish
the coordinators from the devices. The placement of the
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Figure 2: The Crossed View perspective

nodes is static and represents the euclidean distance from the
sink node (also referred to as the central PAN coordinator).
This attribute is designed to offer an immediate image of the
location of the attacker, i.e., how far the attack took place
from the central point. Hence, the administrator is able to
detect a potential thread immediately by taking a look in
the upper right quarter of the monitor.

The Lower Right Quarter tackles selective forwarding thre-
ads. It shows all sensor nodes in square blocks using differ-
ent colors depending on whether the node is a coordinator
or a device. The scale shows the percentage of the dropped
packets by each node separately. Conceptually, the illustra-
tion is based on an animation. Each block representing the
sensor node is progressively moving to the observed value
as an animated figure. This method was selected in order
to capture the magnitude of the thread instead of a simple
value in a time point. Similarly, the animated object is mov-
ing backwards when the thread is diminished or resolved so
as to highlight the recession of the previous thread. The
pace of the animated block depends on the observed win-
dow. In essence, a specific time window is maintained for
each node representing the percentage of dropped data dur-
ing this time. The size of the window as well as the frequency
of the update define the pace of the animation.

Figure 3 reveals an example of an attack on the nodes 30
and 31. The square blocks representing nodes 30 and 31 are
moving towards the bottom edge of the quarter, expressing
a considerable drop ratio that should be treated by the ob-
server. The alarm is triggered in the upper right quarter,
which plays the role of the analyzer, by changing the color
of the nodes’ indices under attack. The threshold (drop
ratio) triggering this color is considered as a system param-
eter. Assuming that at least 5% drop ratio is acceptable,
under normal network operation, the adopted threshold in
the demonstration was set to 5%. The magnitude of the
alarm depends on the distance the square block covers. For
instance, as the Figure 3 illustrates, currently both nodes
experience at least 40% drop ratio. The added value of this
perspective lies in the animated graph, where the observer
could timely perceive the potential thread, identify the vic-
tims, and recognize the level of the thread.

The jamming thread is monitored in the Lower Left Quar-
ter. Once more, the animation concept is utilized in order to
effectively illustrate potential jamming attacks in the sensor
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Figure 3: An example of selective forwarding attack
on nodes 30 and 31

network. All sensor nodes are incessantly moving showing a
normal operation. This action represents the ongoing traffic
sent rate. In other words, the height where a node is placed
within this quarter reveals its traffic sent rate in packets/sec.
This rate is normalized between 0 and the maximum rate
observed during the network operation. Under normal net-
work operation, all nodes are uninterruptedly moving up
and down in accordance with their current network dynam-
ics, i.e., depending on their traffic rates. The rationale be-
hind this coincides with the jamming attack operation. A
sensor node that is under jamming attack is unable to send
and forward data, hence the number of sent and received
data packets tends to zero. To visualize this phenomenon
we plot the current traffic rate of each node in order to iso-
late problematic situations that affect one or more nodes.
For example, Figure 4 depicts a jamming attack affecting
nodes 16, 17, and 18. It is worth mentioning that in the
visualization paradigm of the lower left quarter, the level of
detail regarding the traffic rate is deliberately low since the
view aims at highlighting the existence of traffic instead of
traffic details. Nonetheless, the notification of the thread is
also reflected in the upper right quarter, wherein the ana-
lyzer takes into account the monitored attack and marks the
links of the nodes under (jamming) attack.

One of the major contributions of this work lies in the
Upper Left Quarter. In this illustration, we tried to encode
analytics considering the network cluster’s perspective. A
set of adjacent columns, one for each existing cluster, dy-
namically change color introducing the level of granularity
of the threads upon each cluster. By highlighting the level
of the thread in each cluster separately, we address the ro-
bustness and the efficacy of the visualization results. In this
manner, the crossed view is applicable to human diagnosis of
medium and large scale data, since an administrator is able
to determine the granularity and the localization factors,
i.e., where the thread is moving and what is the level of the
thread. By using the red color as a basis, in order to further
highlight the potential attacks, different scaling of thread di-
mensions are normalized based on the opacity (alpha) color
property. Alternatively, a sequential color scheme could be
used [20]. We consider the following additive expression for
determining the highlight function (HF), where i stands for
the cluster ID:
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Figure 4: An example of jamming attack on nodes
16, 17, and 18

HF' = wsp x SFIM" +wy x JIM' (1)

The parameters SFIM® and JIM" denote the impact of
the selective forwarding and jamming attack respectively.
The weighting factors wsr and wy provide the relative sig-
nificance of the two threads to the determination of the high-
light function. A wide range of functions may be defined
simply by introducing different specifications of the SFIM®
and the JIM® expressions. However, taking into account
that the color opacity takes values in the range [0,255], the
highlight function should satisfy the following constraint:

0< HF' <255=0<wsr x SFIM' +wy x JIM" <255 (2)

Functions SFIM*® and JIM?® should be incremental, by
showing higher levels of thread by higher values. The former
function expresses the level of thread observed by a single or
multiple selective forwarding attacks in the sensor network.
Intuitively, it should reflect the level of alarm for each cluster
separately. Given that the measurement of a node that is
under selective forwarding attack is between 0% (no thread)
and 100% (complete attack), we define the SFIM" function
as follows:

SFIM'= D' x 125 (3)

The parameter D denotes the average drop ratio of the
i-th cluster, thus it holds that 0 < D® < 1. If D* = 0,
the corresponding cluster experiences no selective forward-
ing attack. On the contrary, a complete selective forwarding
attack occurs in all sensor nodes of a cluster when D = 1.

On the other hand, the JIM?® function corresponds to
the results obtained by a jamming attack to a single or to
multiple sensor nodes. In this case, the result is boolean;
i.e., a sensor node is or is not under jamming attack. Hence,
this phenomenon could be formed based on the number of
sensor nodes identified as jamming victims divided by the
total number of sensor nodes the cluster includes. Following
the above remarks, the JIM"® function is defined as follows:

SFIM' = J' x 125 (4)

The parameter J* expresses the portion of the jamming’s
victim nodes in a single cluster. Obviously, the lowest value
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Figure 5: An example of massive attack on cluster
1 as illustrated by the Crossed View

the function J° can receive is 0, meaning that no jamming
attacks were observed in cluster i, whereas the value 1 dic-
tates a complete jamming attack within the cluster .

As previously mentioned, the weighting factors wsr and
w, express the relative significance of the two threads. The
weights offer the capability of dynamically readjusting the
point of view regarding the two types of attack. For ex-
ample, an administrator may consider the jamming attack
much more important than the selective forwarding attack
since the environment could be outdoor and more hostile to
potential jamming attackers. In order to comply with the
relation (2), the summation of the two weight factors is one:

()

wsr +wy =1

Initially, we treat both threads equally, so it holds:

(6)

However, a fair treatment of the above weights could be
insufficient. For instance, it is important to take into ac-
count the frequency an attack is exploited in order to evalu-
ate the attack in the visualization paradigm accordingly. In
this way, we further determine the adequate relative signif-
icance of the two weights by proposing a dynamic formula
that defines the relative values of the above parameters. Let
SFI and JI be the number of the selective forwarding and
jamming attack instances of the previous time window, T,
respectively. Then, the weighting factors wsr and w; are
defined as follows:

__SFI__ . JI )
T SFI+JI Y T SFI+JI’

One major drawback of the crossed view is the lack of
space when the area under investigation is a large-scale WSN.
In this case, we tried to address scalability issues by inau-
gurating a more focused view, similar to the crossed view,
called Crossed Cluster View. Figure 5 shows a massive at-
tack on cluster 1. Specifically, nodes 16 and 17 experience a
selective forwarding attack, while node 15 is under jamming
attack. The analyzer in the upper right quarter marks the
evidences of the massive attack, i.e., it marks the link of the
node 15 and draws the numbers of nodes 16 and 17 with red
color. At the same time, the corresponding column in the
upper left quarter indicates a massive attack on cluster 1. In

wsr = 0.5, wy =0.5

wsF VSFI+ JI #0
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Figure 6: An alternative view of massive attack on
cluster 1 by using the Crossed Cluster View

this case, it useful for the administrator to detect significant
changes only in the area of interest, i.e., in cluster 1. Hence,
by a single click on the related column the user may navigate
to the cluster of interest and further investigate the situa-
tion. Figure 6 shows the focused view of the crossed cluster
view, in which the problematic cluster is isolated allowing
for more efficient countermeasures.

3.3 The Track View

The Crossed View offers a dynamic projection of the sys-
tem status in multiple perspectives. It identifies the nodes
under attack, the magnitude of the thread, and the danger-
ous cluster. However, the localization property of the attack
is not addressed. The user is aware of the thread but is un-
aware of two facts; when and where the thread occurred.
In order to address this weakness, we further strengthened
the capabilities of the SRNET system by introducing the
Track View. The Track View aims at tracking a potential
thread by estimating its source coordinates. Figure 7 de-
picts the outcome of the Track View as a jamming attack is
in progress somewhere between the clusters 1 and 2. In this
paradigm, the nodes are designed in circles, having their ID
within the circle, while the coordinate nodes have different
color from the devices. The area is the normalized version of
the original Geographical Topology View, where the connec-
tion points implicitly reveal the area of each cluster. More-
over, a black ring distinguishes each cluster to its area. The
radius of each ring is calculated so as to enclose all nodes
that belong to this cluster. It is worth mentioning that the
fill color of each cluster obeys to the rules described in the
Section 3.1, i.e., it includes the same color the corresponding
column the upper left quarter in the Crossed View has. The
rationale behind this is to maintain the thread level to this
view, and as such, avoid the disorientation of the observer.

The contribution here lies in the yellow surface that stands
between the two clusters. This surface is called the Track
Surface, and endeavors to estimate the source and the range
of the jamming attack. While the notification of the selec-
tive forwarding evidences is a trivial issue, i.e., we use a red
ring to point a node that experiences a notable drop ratio, as
it happens in the case of node 16, the attachment of the jam-
ming source and its properties is a challenge. The Track Al-
gorithm describes the logic behind the determination of the

Track View

Figure 7: An example of jamming attack on nodes
1,2, 12, 15, 16, 19, 20, and 21.

jamming activity area. In essence, the algorithm calculates
the central point of the surface formed by the coordinates of
the nodes under attack. Then, it calculates the maximum
distance from this point to the most far cited node; that is,
the radius. It is worth mentioning that if there is only a
single node under jamming attack, then the Track Surface
is simply its range. For example, by observing the Figure
7 we can see the nodes under jamming attack marked with
a red ring, namely the nodes 1, 2, 12, 15, 16, 19, 20, and
21. The Track Surface estimates that the intruder may be
located in the central point considering all nodes together.

Algorithm 1 Track Algorithm

Input: The coordinates of z nodes under jamming attack
(N =Nl1x,N1ly,N2x,N2y,..Nzx, Nzy).
Output: The estimating coordinates of the jamming source
(Jx,Jy) and the its radius (RADIUS).
{ Find the Activity Center }
tempSumX =0
tempSumY =0
for each node ¢ under jamming attack do
tempSumX = tempSumX + Nix
tempSumY = tempSumY + Niy
end for
Jx = tempSumX/z
Jy = tempSumY/z
MazDistance FromSource = 0
for each node ¢ under jamming attack do
if Euclidean_Distance(Jx, Jy, Nix, Niy) >
MazxDistance FromSource then
Maz Distance FromSource =
Euclidean_Distance(Jx, Jy, Nix, Niy)
end if
end for
RADIUS = MaxDistanceFromSource

3.4 The Track Area View

In order to accurately track the source of a potential jam-
ming attack, we introduce the Track Area View. This illus-
tration is complementary to the Track View adding a crucial



Track Area View

Figure 8: An instance of four jamming attacks in
different time periods.

value in the dynamic network behavior, namely the time pa-
rameter. As previously mentioned, the Track View estimates
the location of the intruder as well as the radius of the jam-
ming interference. By applying the track area perspective,
we enhance the obtained image with the time dimension.
The time correlation is achieved using a different color hue
for each monitored jamming attack.

Initially, the whole sensor network is divided into tiles of
squared shape. The track area view aims at characterizing
the area in accordance with the obtained results using a dif-
ferent color. The red color is used again in order to highlight
the dangerous area. The opacity of the color corresponds to
the time the attack was perceived. The Track Area Algo-
rithm (TAA) describes the way of treating a jamming attack
in both distance and time domains. The algorithm consists
of two phases, the Refresh Phase and the Update Phase. The
refresh phase is responsible to demonstrate the time dimen-
sion by fading the color opacity of the tiles that have been
affected by past jamming attacks. It operates periodically
so as to pinpoint the time elapsed from previous attacks.
The speed of the evaporation, denoted as Trefresn, deter-
mines when the past points of interest will be completely
disappeared, and therefore defines the time window of the
presence of past attacks. On the other hand, the update
phase attributes fresh color to the current, interesting tiles,
forming the incomings jamming attack. A fresh color is de-
fined by its opacity; the maximum opacity, i.e., the value
of 255, shows a very recent anomaly that needs immediate
measures. We employ the simple, but effective, Euclidean
distance in order to decide whether a specific tile belongs
to the area of the jamming attack. As a result, the fresh
colored tiles represent the current time, the weak red areas
indicate past attacks, and the white area stands for a clear
territory.

Figure 8 captures four jamming attacks occurred in differ-
ent times. Regarding the first attack within the borders of
cluster 5, the color of the Track Surface is quite light. With
regard to the attack located in the lower left, the color is
light but more intense than the previous attack. The two
upper attacks are more recent, while the right one is the
current attack. The current attack is drawn in full red in
order to highlight an emergent situation.
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Algorithm 2 The Track Area Algorithm

Input: .
The number of available tiles (TT)
The coordinates of a tile of the given network area (15,7,
The coordinates of the estimated jamming source (Sz,Sy
The estimated range of the jamming source Srange
The refresh period Trefresh
A flag denoting whether there is an active jamming attack
(jamming_thread)

Output: The new color value Topacity-

)
)

Algorithm 3 The Phases of the TAA Algorithm

{ Refresh Phase }
for each period Tycfresn do
for each tile TI do
if Topacity > 0 then
Topacity = Topacity -1
end if
end for
end for
{ Update Phase }
if jamming_thread == TRUE then
if FEuclidean_Distance(Tx,Ty,Sz,Sy) < Srange then
Topacity = 255
end if
end if

4. PERFORMANCE EVALUATION

In this Section, we provide an evaluation paradigm of the
proposed analytics. In particular, the Track Area Algorithm
is assessed so as to demonstrate its accuracy. We consider
a bot machine that performs a jamming attack as it moves
through the sensor network. The machine follows a fixed
path starting from the middle of the network left side and
finishing in the middle of the network right side. We assume
that the sensor network is placed within an area of 1000 x 800
distance points, e.g., meters. We measure the difference of
the estimating central point of the attack compared to the
actual coordinates of the bot. The bot changes position with
a speed of 50 distance points per 60 seconds. The evaluation
criterion is the Euclidean distance between the estimated
and the actual coordinates of the attack source.
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Figure 9: Average distance error of the Track Area
Algorithm in terms of distance units.



Figure 9 depicts the evaluation results. One important
point raised by this figure is that the error level is reduced
as the range of the attack comes larger. This is attributed to
the fact that a larger attack affects more nodes, so it is more
accurate to estimate the coordinates of the source. Another
point of interest is that the error is quite limited given that
the estimation of the proposed framework is blind. The es-
timation depends on the nodes under attack, hence, a dense
sensor network could provide better estimations compared
to a spatial network such as the one under investigation.
Nonetheless, the introduced visualization tool is a step to-
ward in the area of visual-based anomaly detection assisting
the security professionals at identifying networks attacks.

5. CONCLUSIONS AND FUTURE WORK

The ever-increasing amount of security events reported in
mission-critical applications wireless sensor networks are en-
visaged to support asks for new tools to deal with them. As
a novel network security visualization tool, SRNET stands
out as one such solution. In this work we proposed a ro-
bust, efficient, and effective visualization tool that is ca-
pable of identifying selective forwarding and jamming at-
tacks, two of the most daunting challenges in the sensor
network security field. The tool is based on multiple point
of views, each offering a compelling perspective on address-
ing potential threads in a sensor network. The add-on values
of the presented views focus on identifying multiple threads
at a glance, tracking unpredictable jamming attacks, and
enhancing the whole view with the time dimension. The
accuracy of the tracking capability was assessed and the re-
sults indicated that the proposed tool could be a power-
ful visual analyzer on confronting dynamic, unpredictable,
and massive network threads. In the future, we intend to
validate the SRNET system through extended user studies
where network analysts and experts will use the system and
provide feedback on its usability. Moreover, we will extend
the capabilities of the SRNET system in order to enable the
tool to detect a series of new attack patterns, such as Sybil
attacks, Sinkhole attacks, Wormhole attacks, etc.
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